Let be an odd prime number and a finite abelian -group. We describe the unit group of (the completion of the localization at of ) as well as the kernel and cokernel of the integral logarithm , which appears in non-commutative Iwasawa theory.
Soient un nombre premier impair et un groupe fini abélien. Nous décrivons le groupe d’unités de (la complétion du localisé de en ) ainsi que le noyau et le conoyau du logarithme intégral , qui apparaît dans la théorie d’Iwasawa non-commutative.
Revised:
Published online:
DOI: 10.5802/jtnb.711
Author's affiliations:
@article{JTNB_2010__22_1_197_0, author = {J\"urgen Ritter and Alfred Weiss}, title = {The integral logarithm in {Iwasawa} theory~: an exercise}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {197--207}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.711}, zbl = {1214.11124}, mrnumber = {2675880}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.711/} }
TY - JOUR TI - The integral logarithm in Iwasawa theory : an exercise JO - Journal de Théorie des Nombres de Bordeaux PY - 2010 DA - 2010/// SP - 197 EP - 207 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.711/ UR - https://zbmath.org/?q=an%3A1214.11124 UR - https://www.ams.org/mathscinet-getitem?mr=2675880 UR - https://doi.org/10.5802/jtnb.711 DO - 10.5802/jtnb.711 LA - en ID - JTNB_2010__22_1_197_0 ER -
Jürgen Ritter; Alfred Weiss. The integral logarithm in Iwasawa theory : an exercise. Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 1, pp. 197-207. doi : 10.5802/jtnb.711. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.711/
[1] C.W. Curtis and I. Reiner, Methods of Representation Theory, I,II. John Wiley & Sons, 1981, 1987. | Zbl: 0616.20001
[2] B. Coleman, Local units modulo circular units. Proc. AMS 89 (1983), 1–7. | MR: 706497 | Zbl: 0528.12005
[3] I. Fesenko and M. Kurihara, Invitation to higher local fields. Geometry & Topology Monographs 3 (2000), ISSN 1464-8997 (online). | MR: 1804915 | Zbl: 0954.00026
[4] A. Fröhlich, Galois Module Structure of Algebraic Integers. Springer-Verlag, 1983. | MR: 717033 | Zbl: 0501.12012
[5] T. Fukaya and K. Kato, A formulation of conjectures on -adic zeta functions in non-commutative Iwasawa theory. Proc. St. Petersburg Math. Soc. 11 (2005). | MR: 2276851 | Zbl: pre05620988
[6] K. Kato, Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Preprint (‘Very preliminary version’ , 2006)
[7] S. Lang, Cylotomic Fields I-II. Springer GTM 121 (1990). | MR: 1029028 | Zbl: 0704.11038
[8] R. Oliver, Whitehead Groups of Finite Groups. LMS Lecture Notes Series 132, Cambridge (1988). | MR: 933091 | Zbl: 0636.18001
[9] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, II. Indagationes Mathematicae 15 (2004), 549–572. | MR: 2114937 | Zbl: 1142.11369
[10] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, III. Mathematische Annalen 336 (2006), 27–49. | MR: 2242618 | Zbl: 1154.11038
[11] J. Ritter and A. Weiss, Non-abelian pseudomeasures and congruences between abelian Iwasawa -functions. Pure and Applied Mathematics Quarterly 4 (2008), 1085–1106. | MR: 2441694 | Zbl: pre05380356
[12] J. Ritter and A. Weiss, Congruences between abelian pseudomeasures. Math. Res. Lett. 15 (2008), 715–725. | MR: 2424908 | Zbl: 1158.11047
[13] J. Ritter and A. Weiss, Equivariant Iwasawa theory : an example. Documenta Mathematica 13 (2008), 117–129. | MR: 2420909 | Zbl: pre05291240
Cited by Sources: