We consider the Legendre quadratic forms
and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers , for which the form has a non-trivial rational zero. Under certain mild conditions on the integers , we are able to find the asymptotic formula for the number of such forms.
Formes quadratiques ternaires avec zéros rationnels
Nous considérons les formes quadratiques de Legendre
et, en particulier, une question posée par J–P. Serre, de compter le nombre de paires d’ entiers , pour lesquels la forme possède un zéro rationnel et non-trivial. Sous certaines conditions faibles sur les entiers , on peut trouver la formule asymptotique pour le nombre de telles formes.
@article{JTNB_2010__22_1_97_0, author = {John Friedlander and Henryk Iwaniec}, title = {Ternary quadratic forms with rational zeros}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {97--113}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.706}, mrnumber = {2675875}, zbl = {1219.11060}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.706/} }
TY - JOUR AU - John Friedlander AU - Henryk Iwaniec TI - Ternary quadratic forms with rational zeros JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 97 EP - 113 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.706/ DO - 10.5802/jtnb.706 LA - en ID - JTNB_2010__22_1_97_0 ER -
%0 Journal Article %A John Friedlander %A Henryk Iwaniec %T Ternary quadratic forms with rational zeros %J Journal de théorie des nombres de Bordeaux %D 2010 %P 97-113 %V 22 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.706/ %R 10.5802/jtnb.706 %G en %F JTNB_2010__22_1_97_0
John Friedlander; Henryk Iwaniec. Ternary quadratic forms with rational zeros. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 1, pp. 97-113. doi : 10.5802/jtnb.706. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.706/
[1] Cojocaru A. C. and Murty M. R., An Introduction to Sieve Methods and their Applications. London Math. Soc. Student Texts 66. Cambridge University Press, Cambridge, 2005. | MR | Zbl
[2] Guo C. R., On solvability of ternary quadratic forms. Proc. London Math. Soc. 70 (1995), 241–263. | MR | Zbl
[3] Fouvry É. and Klüners J., On the 4-rank of class groups of quadratic number fields. Invent. Math. 167 (2007), 455–513. | MR | Zbl
[4] Heilbronn H., On the averages of some arithmetical functions of two variables. Mathematika 5 (1958), 1–7. | MR | Zbl
[5] Iwaniec H., Rosser’s sieve. Acta Arith. 36 (1980), 171–202. | MR | Zbl
[6] Serre J–P., A Course of Arithmetic. Springer, New York, 1973. | Zbl
[7] Serre J–P., Spécialisation des éléments de . C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 397–402. | MR | Zbl
[8] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D.R. Heath-Brown. Clarendon Press, Oxford, 1986. | MR | Zbl
Cited by Sources: