Dyadic diaphony of digital sequences
Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 2, pp. 501-521.

The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital (0,s)-sequences over 2 , s=1,2. These formulae show that for fixed s{1,2}, the dyadic diaphony has the same values for any digital (0,s)-sequence. For s=1, it follows that the dyadic diaphony and the diaphony of special digital (0,1)-sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital (0,s)-sequences and show that for s=1 it satisfies a central limit theorem.

La diaphonie diadique est une mesure quantitative pour l’irrégularité de la distribution d’une suite dans le cube unitaire. Dans cet article nous donnons des formules pour la diaphonie diadique des (0,s)-suites digitales sur 2 , s=1,2. Ces formules montrent que, pour s{1,2} fixé, la diaphonie diadique a les mêmes valeurs pour chaque (0,s)-suite digitale. Pour s=1, il résulte que la diaphonie diadique et la diaphonie des (0,1)-suites digitales particulières sont égales, en faisant abstraction d’une constante. On détermine l’ordre asymptotique exact de la diaphonie diadique des (0,s)-suites digitales et on montre que pour s=1 elle satisfait un théorème de la limite centrale.

Received:
Published online:
DOI: 10.5802/jtnb.599
Friedrich Pillichshammer 1

1 Universtät Linz Institut für Finanzmathematik Altenbergerstrasse 69 A-4040 Linz, Austria
@article{JTNB_2007__19_2_501_0,
     author = {Friedrich Pillichshammer},
     title = {Dyadic diaphony of digital sequences},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {501--521},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {2},
     year = {2007},
     doi = {10.5802/jtnb.599},
     zbl = {1152.11036},
     mrnumber = {2394899},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.599/}
}
TY  - JOUR
TI  - Dyadic diaphony of digital sequences
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2007
DA  - 2007///
SP  - 501
EP  - 521
VL  - 19
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.599/
UR  - https://zbmath.org/?q=an%3A1152.11036
UR  - https://www.ams.org/mathscinet-getitem?mr=2394899
UR  - https://doi.org/10.5802/jtnb.599
DO  - 10.5802/jtnb.599
LA  - en
ID  - JTNB_2007__19_2_501_0
ER  - 
%0 Journal Article
%T Dyadic diaphony of digital sequences
%J Journal de Théorie des Nombres de Bordeaux
%D 2007
%P 501-521
%V 19
%N 2
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.599
%R 10.5802/jtnb.599
%G en
%F JTNB_2007__19_2_501_0
Friedrich Pillichshammer. Dyadic diaphony of digital sequences. Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 2, pp. 501-521. doi : 10.5802/jtnb.599. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.599/

[1] H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. | MR: 1206080 | Zbl: 0772.11022

[2] J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149–195. | MR: 2123222 | Zbl: 1085.41021

[3] J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over 2 . Monatsh. Math. 145 (2005), 285–299. | MR: 2162347 | Zbl: pre02232176

[4] J. Dick and F. Pillichshammer, On the mean square weighted 2 -discrepancy of randomized digital (t,m,s)-nets over 2 . Acta Arith. 117 (2005), 371–403. | MR: 2140164 | Zbl: 1080.11058

[5] J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70 (2005), 159–171. | MR: 2176902 | Zbl: pre02236013

[6] M. Drmota, G. Larcher and F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11–41. | MR: 2171290 | Zbl: 1088.11060

[7] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. | MR: 1470456 | Zbl: 0877.11043

[8] H. Faure, Discrepancy and diaphony of digital (0,1)-sequences in prime base. Acta Arith. 117 (2004), 125–148. | MR: 2139596 | Zbl: 1080.11054

[9] H. Faure, Irregularites of distribution of digital (0,1)-sequences in prime base. Integers 5 (2005), A7, 12 pages. | MR: 2191753 | Zbl: 1084.11041

[10] V.S. Grozdanov, On the diaphony of one class of one-dimensional sequences. Internat. J. Math. Math. Sci. 19 (1996), 115–124. | MR: 1361985 | Zbl: 0841.11038

[11] P. Hellekalek and H. Leeb, Dyadic diaphony. Acta Arith. 80 (1997), 187–196. | MR: 1450924 | Zbl: 0868.11034

[12] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. | MR: 419394 | Zbl: 0281.10001

[13] G. Larcher, H. Niederreiter and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121 (1996), 231–253. | MR: 1383533 | Zbl: 0876.11042

[14] G. Larcher and F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. | MR: 1957912 | Zbl: 1054.11039

[15] H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337. | MR: 918037 | Zbl: 0626.10045

[16] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992. | MR: 1172997 | Zbl: 0761.65002

[17] F. Pillichshammer, Digital sequences with best possible order of L 2 –discrepancy. Mathematika 53 (2006), 149–160. | MR: 2304057 | Zbl: 1121.11049

[18] P.D. Proinov and V.S. Grozdanov, On the diaphony of the van der Corput-Halton sequence. J. Number Theory 30 (1988), 94–104. | MR: 960236 | Zbl: 0654.10050

[19] P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121–132. | MR: 501760 | Zbl: 0356.65007

Cited by Sources: