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Dyadic diaphony of digital sequences

par Friedrich PILLICHSHAMMER

Résumé. La diaphonie diadique est une mesure quantitative pour
l’irrégularité de la distribution d’une suite dans le cube unitaire.
Dans cet article nous donnons des formules pour la diaphonie dia-
dique des (0, s)-suites digitales sur Z2, s = 1, 2. Ces formules
montrent que, pour s ∈ {1, 2} fixé, la diaphonie diadique a les
mêmes valeurs pour chaque (0, s)-suite digitale. Pour s = 1, il ré-
sulte que la diaphonie diadique et la diaphonie des (0, 1)-suites di-
gitales particulières sont égales, en faisant abstraction d’une cons-
tante. On détermine l’ordre asymptotique exact de la diaphonie
diadique des (0, s)-suites digitales et on montre que pour s = 1
elle satisfait un théorème de la limite centrale.

Abstract. The dyadic diaphony is a quantitative measure for
the irregularity of distribution of a sequence in the unit cube. In
this paper we give formulae for the dyadic diaphony of digital
(0, s)-sequences over Z2, s = 1, 2. These formulae show that for
fixed s ∈ {1, 2}, the dyadic diaphony has the same values for
any digital (0, s)-sequence. For s = 1, it follows that the dyadic
diaphony and the diaphony of special digital (0, 1)-sequences are
up to a constant the same. We give the exact asymptotic order of
the dyadic diaphony of digital (0, s)-sequences and show that for
s = 1 it satisfies a central limit theorem.

1. Introduction

The diaphony FN (see [19] or [7, Definition 1.29] or [12, Exercise 5.27, p.
162]) of the first N elements of a sequence ω = (xn)n≥0 in [0, 1)s is given
by

FN (ω) =

∑
k∈Zs

k 6=0

1
ρ(k)2

∣∣∣∣∣ 1
N

N−1∑
n=0

e2πi〈k,xn〉
∣∣∣∣∣
2


1/2

,

where for k = (k1, . . . , ks) ∈ Zs it is ρ(k) =
∏s

i=1 max(1, |ki|) and 〈·, ·〉
denotes the usual inner product in Rs. It is well known that the diaphony
is a quantitative measure for the irregularity of distribution of the first N
points of a sequence. In fact, a sequence ω is uniformly distributed modulo
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1 if and only if limN→∞ FN (ω) = 0. Throughout this paper we will call the
diaphony the classical diaphony.

In [11] Hellekalek and Leeb introduced the notion of dyadic diaphony
which is similar to the classical diaphony but with the trigonometric func-
tions replaced by Walsh functions. Before we give the exact definition
of the dyadic diaphony recall that Walsh-functions in base 2 can be de-
fined as follows: for a non-negative integer k with base 2 representation
k = κm2m + · · · + κ12 + κ0 and a real x with (canonical) base 2 repre-
sentation x = x1

2 + x2
22 + · · · the k-th Walsh function in base 2 is defined

as
walk(x) := (−1)x1κ0+x2κ1+···+xm+1κm .

For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define

walk1,...,ks(x1, . . . , xs) :=
s∏

j=1

walkj
(xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ Rs we write

walk(x) := walk1,...,ks(x1, . . . , xs).

Now we can give the definition of the dyadic diaphony (see Hellekalek
and Leeb [11]).

Definition. The dyadic diaphony F2,N of the first N elements of a sequence
ω = (xn)n≥0 in [0, 1)s is defined by

F2,N (ω) =

 1
3s − 1

∑
k∈Ns

0
k 6=0

1
ψ(k)2

∣∣∣∣∣ 1
N

N−1∑
n=0

walk(xn)

∣∣∣∣∣
2


1/2

,

where for k = (k1, . . . , ks) ∈ N2
0 it is ψ(k) =

∏s
i=1 ψ(ki) and for k ∈ N0,

ψ(k) =
{

1 if k = 0,
2r if 2r ≤ k < 2r+1 with r ∈ N0.

Throughout the paper we will write r(k) = r if r is the unique determined
integer such that 2r ≤ k < 2r+1.

It is shown in [11, Theorem 3.1] that the dyadic diaphony is a quanti-
tative measure for the irregularity of distribution of the first N points of
a sequence: a sequence ω is uniformly distributed modulo 1 if and only
if limN→∞ F2,N (ω) = 0. Further it was shown in [5] that the dyadic di-
aphony is — up to a factor depending only on s — the worst-case error for
quasi-Monte Carlo integration of functions from a certain Hilbert space.

We consider the dyadic diaphony of a special class of sequences in [0, 1)s,
namely of so-called digital (0, s)-sequences over Z2 for s = 1, 2. Digital
(0, s)-sequences or more generally digital (t, s)-sequences were introduced



Dyadic diaphony of digital sequences 503

by Niederreiter [15, 16] and they provide at the moment the most efficient
method to generate sequences with excellent distribution properties. We
remark that a digital (0, s)-sequence over Z2 only exists if s = 1 or s = 2.
For higher dimensions s ≥ 3 the concept of digital (t, s)-sequence over Z2

with t > 0 has to be stressed (see [15] or [16]).
Before we give the definition of digital (0, s)-sequences we introduce some

notation: for a vector ~c = (γ1, γ2, . . .) ∈ Z∞2 and for m ∈ N we denote
the vector in Zm

2 consisting of the first m components of ~c by ~c(m), i.e.,
~c(m) = (γ1, . . . , γm). Further for an N×N matrix C over Z2 and for m ∈ N
we denote by C(m) the left upper m×m submatrix of C.

Definition. For s ∈ {1, 2}, choose s N × N matrices C1, . . . , Cs over Z2

with the following property: for every m ∈ N and every 0 ≤ n ≤ m the
vectors

~c
(1)
1 (m), . . . ,~c (1)

n (m),~c (s)
1 (m), . . . ,~c (s)

m−n(m)

are linearly independent in Zm
2 . Here ~c (j)

i is the i-th row vector of the matrix
Cj . (In particular for any m ∈ N the matrix Cj(m) has full rank over Z2

for all j ∈ {1, . . . , s}.)
For n ≥ 0 let n = n0 + n12 + n222 + · · · be the base 2 representation of

n. For j ∈ {1, . . . , s} multiply the vector ~n = (n0, n1, . . .)> with the matrix
Cj ,

Cj~n =: (xj
n(1), xj

n(2), . . .)> ∈ Z∞2
and set

x(j)
n :=

xj
n(1)
2

+
xj

n(2)
22

+ · · · .

Finally set xn := (x(1)
n , . . . , x

(s)
n ).

Every sequence (xn)n≥0 constructed in this way is called digital (0, s)-
sequence over Z2. The matrices C1, . . . , Cs are called the generator matrices
of the sequence.

To guarantee that the points xn belong to [0, 1)s (and not just to [0, 1]s)
and also for the analysis of the sequence we need the condition that for
each n ≥ 0 and 1 ≤ j ≤ s, we have xj

n(i) = 0 for infinitely many i. This
condition is always satisfied if we assume that for each 1 ≤ j ≤ s and r ≥ 0
we have cji,r = 0 for all sufficiently large i, where cji,r are the entries of the
matrix Cj . Throughout this paper we assume that the generator matrices
fulfill this condition (see [16, p.72] where this condition is called (S6)).

For example if s = 1 and if we choose as generator matrix the N × N
identity matrix, then the resulting digital (0, 1)-sequence over Z2 is the
well known van der Corput sequence in base 2. Hence the concept of digital
(0, 1)-sequences over Z2 is a generalization of the construction principle of
the van der Corput sequence.
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Note that finite versions of digital sequences over Z2 (so-called digital
nets, see [16]) have a nice group structure, namely they are isomorphic to
Cartesian products of the group Z2. The characters of these groups however
are exactly the Walsh functions as defined above. For more information
we refer to [13]. This is the reason why it is more convenient to consider
the dyadic diaphony of digital sequences over Z2 instead of the classical
diaphony. Furthermore this fact was used in many papers for computing
different notions of discrepancies of digital point sets (see, for example,
[2, 3, 4, 5, 6, 14, 17]).

For the classical diaphony it was proved by Faure [8] that

(1) (NFN (ω))2 = π2
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

,

if ω is a digital (0, 1)-sequence over Z2 whose generator matrix C is a
non-singular upper triangular matrix. Faure (and we shall do so as well)
called these sequences NUT-sequences. Here ‖ · ‖ denotes the distance to
the nearest integer function, i.e., ‖x‖ := min(x − bxc, 1 − (x − bxc)). See
also [1, 9, 10, 18] for further results concerning the classical diaphony of
special 1-dimensional sequences.

The aim of this paper is to prove a similar formula for the dyadic di-
aphony of digital (0, s)-sequences over Z2 for s ∈ {1, 2} (see Theorems
2.1 and 3.1). These formulae show that for fixed s the dyadic diaphony
is invariant for digital (0, s)-sequences over Z2. Further we find that the
dyadic diaphony and the classical diaphony of NUT-sequences (s = 1) only
differ by a multiplicative constant (Corollary 2.2). We obtain the exact as-
ymptotic order of the dyadic diaphony of digital (0, s)-sequences over Z2

(Corollaries 2.3 and 3.2). Moreover it follows from our formula that the
squared dyadic diaphony of digital (0, 1)-sequences over Z2 satisfies a cen-
tral limit theorem (Corollary 2.4). For digital (0, 2)-sequences we will obtain
a similar, but weaker result (Corollary 3.3).

2. The results for s = 1

First we give the formula for the dyadic diaphony of digital (0, 1)-sequen-
ces over Z2. This formula shows that the dyadic diaphony is invariant for
digital (0, 1)-sequences over Z2.

Theorem 2.1. Let ω be a digital (0, 1)-sequence over Z2. Then for any
N ≥ 1 we have

(NF2,N (ω))2 = 3
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

.

We defer the proof of this formula to Section 4.
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Remark. In Theorem 2.1 we have an infinite sum for the dyadic diaphony
of a digital (0, 1)-sequence over Z2. This formula can easily be made com-
putable since for 1 ≤ N ≤ 2m we have ‖N/2u‖ = N/2u for u ≥ m + 1.
Therefore we have

(NF2,N (ω))2 = 3
m∑

u=1

∥∥∥∥N2u

∥∥∥∥2

+
(
N

2m

)2

.(2)

From Theorem 2.1 we find the surprising result that the classical di-
aphony and the dyadic diaphony of a NUT-sequence are essentially the
same.

Corollary 2.2. Let ω be a NUT-sequence over Z2. Then for any N ≥ 1
we have

F2,N (ω) =
√

3
π
FN (ω).

Proof. This follows from Theorem 2.1 together with Faures formula (1). �

From (2) one can see immediately that the dyadic diaphony of a digital
(0, 1)-sequence over Z2 is of order F2,N (ω) = O(

√
logN/N). But we can

even be much more precise. From a thorough analysis of the sum in (2)
we obtain the exact dependence of the dyadic diaphony of digital (0, 1)-
sequences over Z2 on

√
logN/N .

Corollary 2.3. Let ω be a digital (0, 1)-sequence over Z2. For N ≤ 2m we
have

(NF2,N (ω))2 ≤ m

3
+

4
3
− 2(−1)m

9 · 2m
− 1

9 · 22m

and

lim sup
N→∞

(NF2,N (ω))2

logN
=

1
3 log 2

.

The proof of this result will be given in Section 5. We just remark that
the result for the lim sup follows also from a result of Chaix and Faure [1,
Théoréme 4.13] for the classical diaphony of the van der Corput sequence
together with Corollary 2.2 and Theorem 2.1.

In [6] it is shown that the star discrepancy and all Lp-discrepancies of
the van der Corput sequence in base 2 satisfy a central limit theorem. The
same arguments as in the proof of [6, Theorem 2] can now be used to obtain
the subsequent result.

Corollary 2.4. Let ω be a digital (0, 1)-sequence over Z2. Then for every
real y we have
1
M

#
{
N < M : (NF2,N (ω))2 ≤ 1

4
log2N + y

1
4
√

3

√
log2N

}
= Φ(y) + o(1),
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where

Φ(y) =
1√
2π

∫ y

−∞
e−

t2

2 dt

denotes the normal distribution function and log2 denotes the logarithm to
the base 2. I.e., the squared dyadic diaphony of a digital (0, 1)-sequence over
Z2 satisfies a central limit theorem.

Remark. Together with Corollary 2.2 we also obtain a central limit theo-
rem for the square of the classical diaphony of NUT-sequences.

Proof. As already mentioned, the proof follows exactly the lines of the
proof of [6, Theorem 2]. One only has to compute the expectation and the
variance of the random variable

Sm =
m∑

w=1

‖X2w‖2,

where X is uniformly distributed on [0, 1). By tedious but straightfor-
ward calculations we obtain ESm = m/12 and VarSm = m/432 + 7(1 −
2−2m)/1620. �

3. The results for s = 2

We give the formula for the dyadic diaphony of digital (0, 2)-sequences
over Z2 which shows that the dyadic diaphony is invariant for digital (0, 2)-
sequences as well.

Theorem 3.1. Let ω be a digital (0, 2)-sequence over Z2. Then for any
N ≥ 1 we have

(NF2,N (ω))2 =
9
4

∞∑
u=1

∥∥∥∥N2u

∥∥∥∥2

u.

We defer the proof of this formula to Section 4.

Remark. In Theorem 3.1 we have an infinite sum for the dyadic diaphony
of a digital (0, 2)-sequence over Z2. Again this formula can easily be made
computable. For 1 ≤ N ≤ 2m we have

(NF2,N (ω))2 =
9
4

m∑
u=1

∥∥∥∥N2u

∥∥∥∥2

u+
(
N

2m

)2 4 + 3m
4

.(3)

From (3) one can see immediately that the dyadic diaphony of a digital
(0, 2)-sequence over Z2 is of order F2,N (ω) = O(logN/N). Also here we
obtain from a thorough analysis of the sum in (3) the exact dependence of
the dyadic diaphony of digital (0, 2)-sequences over Z2 on logN/N .
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Corollary 3.2. Let ω be a digital (0, 2)-sequence over Z2. Then for any
N ≤ 2m we have

(NF2,N (ω))2 ≤ m2

8
+

7m
8

+
11
9

+O

(
m

2m

)
and

lim sup
N→∞

(NF2,N (ω))2

(logN)2
=

1
8(log 2)2

.

The proof of this result will be given in Section 5. Following this proof
the O(m/2m)-term in the above bound can easily be made explicit.

Unfortunately we could not show that the squared dyadic diaphony of
a digital (0, 2)-sequence over Z2 satisfies a central limit theorem. However,
we were able to prove the following result.

Corollary 3.3. Let ω be a digital (0, 2)-sequence over Z2. Then for any
ε > 0 we have

lim
m→∞

1
2m

#

{
N < 2m :

3
32

− ε <

(
NF2,N (ω)

log2N

)2

<
3
32

+ ε

}
= 1.

Proof. By tedious but straightforward calculations using Theorem 3.1 we
obtain

2m−1∑
N=0

(NF2,N (ω))2 =
3
32
m22m +O(m2m)

and
2m−1∑
N=0

(NF2,N (ω))4 =
9

1024
m42m +O(m32m).

From this the result immediately follows. �

4. The proofs of Theorems 2.1 and 3.1

For the proofs of Theorems 2.1 and 3.1 we need the subsequent lemma.
This result was implicitly proved in [6]. For the sake of completeness we
provide the short proof.

Lemma 4.1. Let the non-negative integer U have binary expansion U =
U0 + U12 + · · · + Um−12m−1. For any non-negative integer n ≤ U − 1 let
n = n0 + n12 + · · · + nm−12m−1 be the binary representation of n. For
0 ≤ p ≤ m− 1 let U(p) := U0 + · · ·+Up2p. Let b0, b1, . . . , bm−1 be arbitrary
elements of Z2, not all zero. Then
U−1∑
n=0

(−1)b0n0+···+bm−1nm−1 = (−1)bw+1Uw+1+···+bm−1Um−12w+1

∥∥∥∥ U

2w+1

∥∥∥∥ ,
where w is minimal such that bw = 1.
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Proof. From splitting up the sum we obtain

U−1∑
n=0

(−1)b0n0+···+bm−1nm−1

=
2w+1(Uw+1+···+Um−12m−w−2)−1∑

n=0

(−1)nw(−1)bw+1nw+1+···+bm−1nm−1

+
U(w)−1∑

n=0

(−1)nw(−1)bw+1Uw+1+···+bm−1Um−1

= 0 + (−1)bw+1Uw+1+···+bm−1Um−1

U(w)−1∑
n=0

(−1)nw

= (−1)bw+1Uw+1+···+bm−1Um−1 ×
{
U(w) if U(w) < 2w,
2w+1 − U(w) if U(w) ≥ 2w,

= (−1)bw+1Uw+1+···+bm−1Um−12w+1 ×
{

U(w)
2w+1 if U(w)

2w+1 <
1
2 ,

1 − U(w)
2w+1 if U(w)

2w+1 ≥ 1
2 ,

= (−1)bw+1Uw+1+···+bm−1Um−12w+1

∥∥∥∥U(w)
2w+1

∥∥∥∥ .
Since

∥∥∥U(w)
2w+1

∥∥∥ =
∥∥∥ U

2w+1

∥∥∥ the result follows. �
Now we can give the

Proof of Theorem 2.1. Let 2r ≤ k < 2r+1. Then k = k0 + k12 + · · · + kr2r

with ki ∈ {0, 1}, 0 ≤ i < r and kr = 1. Let 〈·, ·〉 denote the usual inner
product in Z∞2 and let ~ci ∈ Z∞2 be the i-th row vector of the generator
matrix C of the digital (0, 1)-sequence (for short we write C instead of C1

here). Since the i-th digit xn(i) of the point xn, i ∈ N, n ∈ N0, is given by
〈~ci, ~n〉 (see Definition 1) we have

N−1∑
n=0

walk(xn) =
N−1∑
n=0

(−1)k0〈~c1,~n〉+···+kr〈~cr+1,~n〉

=
N−1∑
n=0

(−1)〈k0~c1+···+kr~cr+1,~n〉.(4)

Let C = (ci,j)i,j≥1. For k ∈ N, k = k0 + k12 + · · · + kr2r, ki ∈ {0, 1},
0 ≤ i < r and kr = 1 define u(k) := min{l ≥ 1 : k0c1,l + · · ·+krcr+1,l = 1}.
Note that since C generates a digital (0, 1)-sequence over Z2 we obviously
have u(k) ≤ r + 1. For fixed k, 2r ≤ k < 2r+1 let ~b = (b0, b1, . . .)> :=
k0~c1 + · · ·+ kr~cr+1. Let N = N0 +N12 + · · ·+Nm−12m−1. If u(k) ≤ m we
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obtain from (4) together with Lemma 4.1,

N−1∑
n=0

walk(xn) =
N−1∑
n=0

(−1)〈~b,~n〉 =
N−1∑
n=0

(−1)n0b0+···+nm−1bm−1

=
N−1∑
n=0

(−1)nu(k)−1+··· = (−1)Nu(k)bu(k)+···2u(k)

∥∥∥∥ N

2u(k)

∥∥∥∥ .
But if u(k) > m the above equality is trivially true. Therefore we have

2(NF2,N (ω))2 =
∞∑

k=1

1
22r(k)

(
2u(k)

∥∥∥∥ N

2u(k)

∥∥∥∥)2

=
∞∑

r=0

1
22r

2r+1−1∑
k=2r

22u(k)

∥∥∥∥ N

2u(k)

∥∥∥∥2

=
∞∑

r=0

1
22r

r+1∑
u=1

22u

∥∥∥∥N2u

∥∥∥∥2 2r+1−1∑
k=2r

u(k)=u

1

=
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

22u
∞∑

r=u−1

1
22r

2r+1−1∑
k=2r

u(k)=u

1.

Now we have to evaluate the sum
2r+1−1∑

k=2r

u(k)=u

1 for r ≥ u− 1 and u ≥ 1. This is

the number of vectors (k0, . . . , kr−1)> ∈ Zr
2 such that

C(r + 1)>


k0
...
kr−1

1

 =



0
...
0
1
xu+1
...
xr+1


∈ Zr+1

2(5)

for arbitrary xu+1, . . . , xr+1 ∈ Z2. (Recall that for an integer m ≥ 1 we
denote by C(m) the left upper m × m submatrix of the matrix C, see
Section 1.)

We consider two cases:
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(i) Assume that r = u− 1. Then system (5) becomes

C(r + 1)>


k0
...
kr−1

1

 =


0
...
0
1

 .
Since the (r + 1) × (r + 1) matrix C(r + 1)> is regular over Z2 it
is clear that there exists a vector ~k = (k0, . . . , kr) ∈ Zr+1

2 such that
C(r + 1)>~k = (0, . . . , 0, 1)>. Assume that kr = 0, then we have
C(r)>(k0, . . . , kr−1)> = (0, . . . , 0)>. Again we know that C(r)> is
regular over Z2 and therefore we obtain k0 = · · · = kr−1 = 0. Hence
~k = ~0, the zero vector in Zr+1

2 . This is now a contradiction since ~k
is a solution of the system C(r + 1)>~k = (0, . . . , 0, 1)>. Therefore
we have

2u−1∑
k=2u−1

u(k)=u

1 = 1.

(ii) Assume that r ≥ u. Since C(r) is regular over Z2 it is clear that
D(r) := (C(r)>)−1 is regular over Z2. Hence for any vector ~k ∈ Zr

2

there is a vector ~l ∈ Zr
2 such that ~k = D(r)~l. Therefore system (5)

can be rewritten as

C(r + 1)>
(
D(r)~l

1

)
=



0
...
0
1
xu+1
...
xr+1


with ~l ∈ Zr

2. Now we use the definition of the matrix D(r) and find
that the above system is equivalent to the system



1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1
d1 d2 . . . dr−1 dr


 l0

...
lr−1

 =



0
...
0
1
xu+1
...
xr+1


+ ~cr+1(r + 1)>,
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where (d1, . . . , dr) := (c1,r+1, . . . , cr,r+1)D(r). Now one can easily
see that for arbitrary xu+1, . . . , xr there exists exactly one solution
~l = (l0, . . . , lr−1)> ∈ Zr

2 such that the first r lines of the above
system are fulfilled. Further there is exactly one possible choice of
xr+1 ∈ Z2 such that this vector ~l is a solution of the above system.
Therefore we obtain

2r+1−1∑
k=2r

u(k)=u

1 = 2r−u.

Now we have

2(NF2,N (ω))2 =
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

22u

(
1

22(u−1)
+

∞∑
r=u

1
22r

2r−u

)
= 6

∞∑
u=1

∥∥∥∥N2u

∥∥∥∥2

.

The result follows. �
Proof of Theorem 3.1. Let ω = (xn)n≥0 be a digital (0, 2)-sequence over Z2.
Let xn = (xn, yn) for n ≥ 0. Clearly the sequences (xn)n≥0 and (yn)n≥0 are
digital (0, 1)-sequences over Z2. We have

(NF2,N (ω))2 =
1
8

∑
k∈N2

0
k 6=0

1
ψ(k)

∣∣∣∣∣
N−1∑
n=0

walk(xn)

∣∣∣∣∣
2

=
1
8

∞∑
k=1

1
22r(k)

∣∣∣∣∣
N−1∑
n=0

walk(xn)

∣∣∣∣∣
2

+
1
8

∞∑
l=1

1
22r(l)

∣∣∣∣∣
N−1∑
n=0

wall(yn)

∣∣∣∣∣
2

+
1
8

∞∑
k,l=1

1
22r(k)+2r(l)

∣∣∣∣∣
N−1∑
n=0

walk(xn)wall(yn)

∣∣∣∣∣
2

=
3
2

∞∑
u=1

∥∥∥∥N2u

∥∥∥∥2

+
1
8

∞∑
k,l=1

1
22r(k)+2r(l)

∣∣∣∣∣
N−1∑
n=0

walk(xn)wall(yn)

∣∣∣∣∣
2

,(6)

where for the last equality we used Theorem 2.1. We have to consider

Σ :=
∞∑

k,l=1

1
22r(k)+2r(l)

∣∣∣∣∣
N−1∑
n=0

walk(xn)wall(yn)

∣∣∣∣∣
2

.

Assume that 2r ≤ k < 2r+1 and 2t ≤ l < 2t+1. Then k = k0+k12+· · ·+kr2r

with ki ∈ {0, 1}, 0 ≤ i < r and kr = 1 and l = l0 + l12 + · · · + lt2t with
lj ∈ {0, 1}, 0 ≤ j < t and lt = 1. Let ~ci ∈ Z∞2 be the i-th row vector of the
generator matrix C1 and let ~di ∈ Z∞2 be the i-th row vector of the generator
matrix C2, i ∈ N. Since the i-th digit xn(i) of xn is given by 〈~ci, ~n〉 and the
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i-th digit yn(i) of yn is given by 〈~di, ~n〉 (see Definition 1) we have

N−1∑
n=0

walk(xn)wall(yn) =
N−1∑
n=0

(−1)k0〈~c1,~n〉+···+kr〈~cr+1,~n〉+l0〈~d1,~n〉+···+lt〈~dt+1,~n〉

=
N−1∑
n=0

(−1)〈k0~c1+···+kr~cr+1+l0 ~d1+···+lt ~dt+1,~n〉.

Let C1 = (ci,j)i,j≥1 and C2 = (di,j)i,j≥1. Define

u(k, l) := min{j ≥ 1 : k0c1,j + · · · + krcr+1,j + l0d1,j + · · · + ltdt+1,j = 1}.

Since C1, C2 generate a digital (0, 2)-sequence over Z2 we obviously have
u(k, l) ≤ r + t + 2. As in the proof of Theorem 2.1 we now apply Lemma
4.1 and obtain ∣∣∣∣∣

N−1∑
n=0

walk(xn)wall(yn)

∣∣∣∣∣ = 2u(k,l)

∥∥∥∥ N

2u(k,l)

∥∥∥∥ .
Therefore we have

Σ =
∞∑

k,l=1

1
22r(k)+2r(l)

22u(k,l)

∥∥∥∥ N

2u(k,l)

∥∥∥∥2

=
∞∑

r,t=0

1
22r+2t

2r+1−1∑
k=2r

2t+1−1∑
l=2t

22u(k,l)

∥∥∥∥ N

2u(k,l)

∥∥∥∥2

=
∞∑

r,t=0

1
22r+2t

r+t+2∑
u=1

22u

∥∥∥∥N2u

∥∥∥∥2 2r+1−1∑
k=2r

2t+1−1∑
l=2t︸ ︷︷ ︸

u(k,l)=u

1.

We have to evaluate the double-sum
2r+1−1∑
k=2r

2t+1−1∑
l=2t︸ ︷︷ ︸

u(k,l)=u

1 for 1 ≤ u ≤ r + t + 2.

To this end we define the (r + t+ 2) × (r + t+ 2) matrix

C(r, t) :=


c1,1 . . . cr+1,1 d1,1 . . . dt+1,1

c1,2 . . . cr+1,2 d1,2 . . . dt+1,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+2 . . . cr+1,r+t+2 d1,r+t+2 . . . dt+1,r+t+2

 .
Note that since C1, C2 generate a digital (0, 2)-sequence over Z2, it follows
that C(r, t) is regular.
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Now the value of the above double-sum is exactly the number of digits
k0, . . . , kr−1, l0, . . . , lt−1 ∈ Z2 such that

C(r, t)



k0
...
kr−1

1
l0
...
lt−1

1


=



0
...
0
1
xu+1
...
xr+t+2


(7)

for arbitrary xu+1, . . . , xr+t+2 ∈ Z2. We consider three cases:
(i) Assume that u = r + t+ 2. Then system (7) becomes

C(r, t)~h =


0
...
0
1

 .(8)

Since C(r, t) is regular there exists a vector ~h = (k0, . . . , kr, l0, . . . , lt)>

∈ Zr+t+2
2 , ~h 6= ~0, such that C(r, t)~h = (0, . . . , 0, 1)>. Assume that

lt = 0. Then


c1,1 . . . cr+1,1 d1,1 . . . dt,1

c1,2 . . . cr+1,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+2 . . . cr+1,r+t+2 d1,r+t+2 . . . dt,r+t+2





k0
...
kr

l0
...
lt−1


=


0
...
0
1

 .

But then


c1,1 . . . cr+1,1 d1,1 . . . dt,1

c1,2 . . . cr+1,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+1 . . . cr+1,r+t+1 d1,r+t+1 . . . dt,r+t+1





k0
...
kr

l0
...
lt−1


=

 0
...
0

 .

Since the above matrix is again regular we obtain that the vector
(k0, . . . , kr, l0, . . . , lt−1) = (0, . . . , 0) and therefore ~h = ~0, a con-
tradiction. Hence lt = 1 and in the same way one can show that
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kr = 1. We have shown that system (8) has exactly one solution
and therefore we have

2r+1−1∑
k=2r

2t+1−1∑
l=2t︸ ︷︷ ︸

u(k,l)=u

1 = 1.

(ii) Assume that u = r+ t+1. Let x ∈ Z2. Since C(r, t) is regular there
exists exactly one vector ~h ∈ Zr+t+2

2 such that

C(r, t)~h = (0, . . . , 0, 1, x)>.

Assume that ~h is of the form ~h = (k0, . . . , kr−1, 1, l0, . . . , lt−1, 1)> ∈
Zr+t+2

2 . In particular we have
c1,1 . . . cr+1,1 d1,1 . . . dt+1,1

c1,2 . . . cr+1,2 d1,2 . . . dt+1,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr+1,r+t d1,r+t . . . dt+1,r+t

~h =

 0
...
0

 .(9)

Since 
c1,1 . . . cr,1 d1,1 . . . dt,1

c1,2 . . . cr,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr,r+t d1,r+t . . . dt,r+t


is regular we find that ~h is the unique solution of (9). Hence ~h is
exactly the same vector as in the first case where u = r+ t+2. But
then ~h cannot be a solution of C(r, t)~h = (0, . . . , 0, 1, x)>. Therefore
we obtain

2r+1−1∑
k=2r

2t+1−1∑
l=2t︸ ︷︷ ︸

u(k,l)=u

1 = 0.

(iii) Assume that 1 ≤ u ≤ r + t. We rewrite system (7) in the form



c1,1 . . . cr,1 d1,1 . . . dt,1

c1,2 . . . cr,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr,r+t d1,r+t . . . dt,r+t

c1,r+t+1 . . . cr,r+t+1 d1,r+t+1 . . . dt,r+t+1

c1,r+t+2 . . . cr,r+t+2 d1,r+t+2 . . . dt,r+t+2





k0
...
kr−1

l0
...
lt−1


=



0
...
0
1
xu+1
...
xr+t

xr+t+1

xr+t+2


+ ~yr,t
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where ~yr,t = (cr+1,1 +dt+1,1, . . . , cr+1,r+t+2 +dt+1,r+t+2)> ∈ Zr+t+2
2 .

Since the upper (r + t) × (r + t) sub-matrix of the above matrix is
regular we find for arbitrary xu+1, . . . , xr+t exactly one solution of
the first r+ t rows of the above system. This solution can be made
a solution of the whole system by an adequate choice of xr+t+1 and
xr+t+2. Therefore we have

2r+1−1∑
k=2r

2t+1−1∑
l=2t︸ ︷︷ ︸

u(k,l)=u

1 = 2r+t−u.

Now we have

Σ =
∞∑

r,t=0

1
22r+2t

(
r+t∑
u=1

22u

∥∥∥∥N2u

∥∥∥∥2

2r+t−u + 22(r+t+2)

∥∥∥∥ N

2r+t+2

∥∥∥∥2
)

=
∞∑

r,t=0

1
2r+t

r+t∑
u=1

2u

∥∥∥∥N2u

∥∥∥∥2

+ 16
∞∑

r,t=0

∥∥∥∥ N

2r+t+2

∥∥∥∥2

=
∞∑

u=1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
r,t=0

r+t≥u

1
2r+t

+ 16
∞∑

u=2

∥∥∥∥N2u

∥∥∥∥2 ∞∑
r,t=0

r+t=u−2

1

=
∞∑

u=1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
w=u

w + 1
2w

+ 16
∞∑

u=2

∥∥∥∥N2u

∥∥∥∥2

(u− 1)

=
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

(2u+ 4) + 16
∞∑

u=2

∥∥∥∥N2u

∥∥∥∥2

(u− 1)

=
∞∑

u=1

∥∥∥∥N2u

∥∥∥∥2

(18u− 12).

The result follows by inserting this expression into (6). �

5. The proofs of Corollaries 2.3 and 3.2

We will say that a real β in [0, 1) is m-bit if β = b1
2 + · · ·+ bm

2m with bi ∈
{0, 1}. I.e., an m-bit number is of the form k/2m with k ∈ {0, 1, . . . , 2m−1}.

The essential technical tool for the proof of Corollary 2.3 is provided by

Lemma 5.1. Assume that β = 0, b1b2 . . . (this here and in the following
always means base 2 representation) has two equal consecutive digits bibi+1
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with i ≤ m− 1 and let i be minimal with this property, i.e.,

β = 0, 01 . . . 0100bi+2 . . . or
β = 0, 10 . . . 0100bi+2 . . . or
β = 0, 01 . . . 1011bi+2 . . . or
β = 0, 10 . . . 1011bi+2 . . . .

Replace β by

γ = 0, 10 . . . 1010bi+2 . . . resp.
γ = 0, 01 . . . 1010bi+2 . . . resp.
γ = 0, 10 . . . 0101bi+2 . . . resp.
γ = 0, 01 . . . 0101bi+2 . . . .

Then
m−1∑
u=0

‖2uγ‖2 =
m−1∑
u=0

‖2uβ‖2+


1
9

(
1 − (−1)i

2i

)2
(1 − τ) in the first two cases,

1
9

(
1 − (−1)i

2i

)2
τ in the last two cases,

where τ := 0, bi+2bi+3 . . ..

Remark. In any case we have
∑m−1

u=0 ‖2uγ‖2 ≥
∑m−1

u=0 ‖2uβ‖2 with equality
iff τ = 1 in the first two cases and iff τ = 0 in the last two cases.

Proof of Lemma 5.1. This is simple calculation. We just handle the first
case here.

m−1∑
u=0

(‖2uγ‖2 − ‖2uβ‖2)(10)

= ‖γ‖2 − ‖2iβ‖2 +
i−1∑
u=0

(‖2u(2γ)‖2 − ‖2uβ‖2).

Here ‖γ‖ = 1
3

(
1 + 1

2i

)
− τ

2i+1 and ‖2iβ‖ = τ
2 . Further, for even u we have

‖2u(2γ)‖ =
1
3

(
1 − 2u+1

2i

)
+

τ

2i−u
and ‖2uβ‖ =

1
3

(
1 − 2u+1

2i

)
+

τ

2i+1−u
,

and for odd u we have

‖2u(2γ)‖ =
1
3

(
1 +

2u+1

2i

)
− τ

2i−u
and ‖2uβ‖ =

1
3

(
1 +

2u+1

2i

)
− τ

2i+1−u
.

Inserting this into (10) we obtain
m−1∑
u=0

(‖2uγ‖2 − ‖2uβ‖2) =
1
9

(
1 +

1
2i

)2

(1 − τ).

The other cases are calculated in the same way. �
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From Lemma 5.1 we obtain the subsequent result concerning the maxi-
mum of

∑m−1
u=0 ‖2uβ‖2 over all β. We remark that in [14] the authors con-

sidered the same problem without the square at the ‖ · ‖-function.

Lemma 5.2. Consider β ∈ R with the canonical base 2 representation
(i.e., with infinitely many digits equal to zero). Then there exists

max
β

m−1∑
u=0

‖2uβ‖2 =
m

9
+

1
9
− (−1)m 2

27 · 2m
− 1

27 · 22m

and it is attained if and only if β is of the form β0 with

β0 =
2
3

(
1 −

(
−1

2

)m+1
)

or β0 =
1
3

(
1 −

(
−1

2

)m)
.

Remark. Note that
2
3

(
1 −

(
−1

2

)m+1
)

=
{

0, 1010 . . . 101 if m is odd,
0, 1010 . . . 011 if m is even,

and

1
3

(
1 −

(
−1

2

)m)
=
{

0, 0101 . . . 011 if m is odd,
0, 0101 . . . 101 if m is even.

Proof of Lemma 5.2. For any γ = 0, c1c2 . . . cmcm+1 . . . with fixed c1, . . . , cm
the sum

∑m−1
u=0 ‖2uγ‖2 obviously becomes maximal if cm = 0 and cm+1 =

cm+2 = · · · = 1, or if cm = 1 and cm+1 = cm+2 = · · · = 0. Hence by Lemma
5.1 the

sup
β

m−1∑
u=0

‖2uβ‖2

only can be attained, respectively approached by

β1 = 0, 1010 . . . 10 111 . . . or
(bm is the last zero)

β2 = 0, 0101 . . . 01 or
β3 = 0, 1010 . . . 11

(bm is the last one)

if m is even, and by

β4 = 0, 0101 . . . 10 111 . . . or
(bm is the last zero)

β5 = 0, 1010 . . . 01 or
β6 = 0, 0101 . . . 11

(bm is the last one)
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if m is odd.
Now we check easily that

m−1∑
u=0

‖2uβk‖2 =
m

9
+

1
9
− (−1)m 2

27 · 2m
− 1

27 · 22m

for k = 1, . . . , 6 and the result follows. �
We give the Proof of Corollary 2.3. We have

max
N≤2m

m∑
u=1

∥∥∥∥N2u

∥∥∥∥2

= max
β m−bit

m−1∑
u=0

‖2uβ‖2 =
m

9
+

1
9
− (−1)m 2

27 · 2m
− 1

27 · 22m

by Lemma 5.2. The result follows now together with (2). �
For the proof of Corollary 3.2 we can in principle proceed as for the proof

of Corollary 2.3. However, in this case the detailed computations are by far
more involved than above. First we have

Lemma 5.3. Assume that β = 0, b1b2 . . . has two equal consecutive digits
bibi+1 with i ≤ m− 1 and let i be minimal with this property, i.e.,

β = 0, 01 . . . 0100bi+2 . . . or
β = 0, 10 . . . 0100bi+2 . . . or
β = 0, 01 . . . 1011bi+2 . . . or
β = 0, 10 . . . 1011bi+2 . . . .

Replace β by

γ = 0, 10 . . . 1010bi+2 . . . resp.
γ = 0, 01 . . . 1010bi+2 . . . resp.
γ = 0, 10 . . . 0101bi+2 . . . resp.
γ = 0, 01 . . . 0101bi+2 . . . .

Then
m−1∑
u=0

‖2uγ‖2(m− u) =
m−1∑
u=0

‖2uβ‖2(m− u)+
(

m
9

(
1 − (−1)i

2i

)2
− i

9 + 4
27·2i

(
1
2i − (−1)i

))
(1 − τ) in the first two cases,(

m
9

(
1 − (−1)i

2i

)2
− i

9 + 4
27·2i

(
1
2i − (−1)i

))
τ in the last two cases,

where τ := 0, bi+2bi+3 . . ..

Remark. In any case, for m > 3, we have
∑m−1

u=0 ‖2uγ‖2(m − u) ≥∑m−1
u=0 ‖2uβ‖2(m− u).
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Proof of Lemma 5.3. We have

m−1∑
u=0

(‖2uγ‖2 − ‖2uβ‖2)(m− u)

= m‖γ‖2−(m−i)‖2iβ‖2+
i−1∑
u=0

(
‖2u(2γ)‖2(m− u− 1) − ‖2uβ‖2(m− u)

)
.

The result now follows as in the proof of Lemma 5.1 by some tedious but
straightforward algebra. �

With Lemma 5.3 we obtain

Lemma 5.4. We have

max
β m−bit

m−1∑
u=0

‖2uβ‖2(m− u)

=


m2

18 + m
18 + 8

81 + 1
2m

(
4
27

(
1 − 1

2m

) (
m+ 2

3

)
− 8

81·2m

)
if m is even,

m2

18 + m
18 + 8

81 + 1
2m

(
m
27 + 1

27

(
1 − 1

2m

) (
m+ 4

3

))
if m is odd.

For even m the maximum is attained if and only if

β =

 0, 0101 . . . 0110 = 1
3

(
1 + 1

2m−1

)
and

0, 1010 . . . 1010 = 2
3

(
1 − 1

2m

)
.

For odd m the maximum is attained if and only if

β =

 0, 0101 . . . 011 = 1
3

(
1 + 1

2m

)
and

0, 1010 . . . 101 = 2
3

(
1 − 1

2m+1

)
.

Proof. For short we write fm(β) :=
∑m−1

u=0 ‖2uβ‖2(m − u). Let m ≥ 2 be
even. It follows from Lemma 5.3 that the m-bit number β which maximizes
our sum has to be of the form

β1 = 0, 0101 . . . 01bm−1bm or β2 = 0, 1010 . . . 10bm−1bm.

First we deal with β1 = 0, 0101 . . . 01bm−1bm. Now we consider four cases
corresponding to the possible choices for bm−1 and bm.

• If (bm−1, bm) = (0, 0), then

fm(β1) =
m2

18
+
m

18
− 1

81
− 8

27
m

2m
− 16

27
m

22m
− 16

81
1

2m
− 64

81
1

22m
.

• If (bm−1, bm) = (1, 1), then

fm(β1) =
m2

18
+
m

18
− 1

81
+

10
27

m

2m
− 25

27
m

22m
+

20
81

1
2m

− 100
81

1
22m

.
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• If (bm−1, bm) = (1, 0), then

fm(β1) =
m2

18
+
m

18
+

8
81

+
4
27

m

2m
− 4

27
m

22m
+

8
81

1
2m

− 16
81

1
22m

.

• If (bm−1, bm) = (0, 1), then

fm(β1) =
m2

18
+
m

18
+

8
81

− 2
27

m

2m
− 1

27
m

22m
− 4

81
1

2m
− 4

81
1

22m
.

Therefore we find that the choice (bm−1bm) = (1, 0) gives the maximal
value, i.e., β1 = 0, 0101 . . . 0110. For β2 = 0, 1010 . . . 10bm−1bm we find
in the same way that (bm−1, bm) = (1, 0) gives the maximal value, i.e.,
β2 = 0, 1010 . . . 1010. Since

fm(β1) = fm(β2) =
m2

18
+
m

18
+

8
81

+
1

2m

(
4
27

(
1 − 1

2m

)(
m+

2
3

)
− 8

81 · 2m

)
the result follows for even m ≥ 2.

For odd m ≥ 3 the result can be proved analogously. �
We give the Proof of Corollary 3.2. We have

max
N≤2m

m∑
u=1

∥∥∥∥N2u

∥∥∥∥2

u = max
β m−bit

m−1∑
u=0

‖2uβ‖2(m−u) =
m2

18
+
m

18
+

8
81

+O

(
m

2m

)
by Lemma 5.4. The result follows now together with (3). �
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