A new lower bound for (3/2) k
Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 311-323.

We prove that, for all integers k exceeding some effectively computable number K, the distance from (3/2) k to the nearest integer is greater than 0.5803 k .

Nous démontrons que pour tout entier k supérieur à une constante K effectivement calculable, la distance de (3/2) k à l’entier le plus proche est minorée par 0,5803 k .

Received:
Published online:
DOI: 10.5802/jtnb.588
Wadim Zudilin 1

1 Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia
@article{JTNB_2007__19_1_311_0,
     author = {Wadim Zudilin},
     title = {A new lower bound for ${\Vert (3/2)^k\Vert }$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {311--323},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {1},
     year = {2007},
     doi = {10.5802/jtnb.588},
     zbl = {1127.11049},
     mrnumber = {2332068},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/}
}
TY  - JOUR
TI  - A new lower bound for ${\Vert (3/2)^k\Vert }$
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2007
DA  - 2007///
SP  - 311
EP  - 323
VL  - 19
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/
UR  - https://zbmath.org/?q=an%3A1127.11049
UR  - https://www.ams.org/mathscinet-getitem?mr=2332068
UR  - https://doi.org/10.5802/jtnb.588
DO  - 10.5802/jtnb.588
LA  - en
ID  - JTNB_2007__19_1_311_0
ER  - 
%0 Journal Article
%T A new lower bound for ${\Vert (3/2)^k\Vert }$
%J Journal de Théorie des Nombres de Bordeaux
%D 2007
%P 311-323
%V 19
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.588
%R 10.5802/jtnb.588
%G en
%F JTNB_2007__19_1_311_0
Wadim Zudilin. A new lower bound for ${\Vert (3/2)^k\Vert }$. Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 311-323. doi : 10.5802/jtnb.588. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/

[1] A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. | MR: 360480 | Zbl: 0298.10018

[2] M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. | MR: 1230126 | Zbl: 0791.11030

[3] M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. | MR: 1276984 | Zbl: 0793.11026

[4] F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. | MR: 611281 | Zbl: 0466.10030

[5] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. | MR: 566655 | Zbl: 0434.10023

[6] F. Delmer, J.-M. Deshouillers, The computation of g(k) in Waring’s problem. Math. Comp. 54 (1990), 885–893. | Zbl: 0701.11043

[7] A. K. Dubickas, A lower bound for the quantity (3/2) k . Russian Math. Surveys 45 (1990), 163–164. | MR: 1075396 | Zbl: 0712.11037

[8] L. Habsieger, Explicit lower bounds for (3/2) k . Acta Arith. 106 (2003), 299–309. | MR: 1957111 | Zbl: 01927454

[9] J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to 471600000. Math. Comp. 55 (1990), 815–820. | Zbl: 0725.11051

[10] K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. | MR: 93509 | Zbl: 0208.31002

[11] L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. | MR: 201688 | Zbl: 0135.28101

[12] R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. | MR: 1435742 | Zbl: 0868.11046

[13] W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of π. Mat. Sb. 196:7 (2005), 51–66. | MR: 2188369 | Zbl: 02238203

Cited by Sources: