Kneser’s theorem for upper Banach density
Journal de théorie des nombres de Bordeaux, Volume 18 (2006) no. 2, pp. 323-343.

Suppose $A$ is a set of non-negative integers with upper Banach density $\alpha$ (see definition below) and the upper Banach density of $A+A$ is less than $2\alpha$. We characterize the structure of $A+A$ by showing the following: There is a positive integer $g$ and a set $W$, which is the union of $⌈2\alpha g-1⌉$ arithmetic sequences [We call a set of the form $a+dℕ$ an arithmetic sequence of difference $d$ and call a set of the form $\left\{a,a+d,a+2d,...,a+kd\right\}$ an arithmetic progression of difference $d$. So an arithmetic progression is finite and an arithmetic sequence is infinite.] with the same difference $g$ such that $A+A\subseteq W$ and if $\left[{a}_{n},{b}_{n}\right]$ for each $n$ is an interval of integers such that ${b}_{n}-{a}_{n}\to \infty$ and the relative density of $A$ in $\left[{a}_{n},{b}_{n}\right]$ approaches $\alpha$, then there is an interval $\left[{c}_{n},{d}_{n}\right]\subseteq \left[{a}_{n},{b}_{n}\right]$ for each $n$ such that $\left({d}_{n}-{c}_{n}\right)/\left({b}_{n}-{a}_{n}\right)\to 1$ and $\left(A+A\right)\cap \left[2{c}_{n},2{d}_{n}\right]=W\cap \left[2{c}_{n},2{d}_{n}\right]$.

Supposons que $A$ soit un ensemble d’entiers non négatifs avec densité de Banach supérieure $\alpha$ (voir définition plus bas) et que la densité de Banach supérieure de $A+A$ soit inférieure à $2\alpha$. Nous caractérisons la structure de $A+A$ en démontrant la proposition suivante : il existe un entier positif $g$ et un ensemble $W$ qui est l’union des $\left[2\alpha g-1\right]$ suites arithmétiques [We call a set of the form $a+dℕ$ an arithmetic sequence of difference $d$ and call a set of the form $\left\{a,a+d,a+2d,...,a+kd\right\}$ an arithmetic progression of difference $d$. So an arithmetic progression is finite and an arithmetic sequence is infinite.] avec la même différence $g$ tels que $A+A\subseteq W$ et si $\left[{a}_{n},{b}_{n}\right]$ est, pour chaque $n$, un intervalle d’entiers tel que ${b}_{n}-{a}_{n}\to \infty$ et la densité relative de $A$ dans $\left[{a}_{n},{b}_{n}\right]$ approche $\alpha$, il existe alors un intervalle $\left[{c}_{n},{d}_{n}\right]\subseteq \left[{a}_{n},{b}_{n}\right]$ pour chaque $n$ tel que $\left({d}_{n}-{c}_{n}\right)/\left({b}_{n}-{a}_{n}\right)\to 1$ et $\left(A+A\right)\cap \left[2{c}_{n},2{d}_{n}\right]=W\cap \left[2{c}_{n},2{d}_{n}\right]$.

DOI: 10.5802/jtnb.547
Classification: 11B05, 11B13, 11U10, 03H15
Keywords: Upper Banach density, inverse problem, nonstandard analysis
Prerna Bihani 1; Renling Jin 2

1 Department of Mathematics University of Notre Dame Notre Dame, IN 46556, U.S.A.
2 Department of Mathematics College of Charleston Charleston, SC 29424, U.S.A.
@article{JTNB_2006__18_2_323_0,
author = {Prerna Bihani and Renling Jin},
title = {Kneser{\textquoteright}s theorem for upper {Banach} density},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {323--343},
publisher = {Universit\'e Bordeaux 1},
volume = {18},
number = {2},
year = {2006},
doi = {10.5802/jtnb.547},
mrnumber = {2289427},
zbl = {05135393},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/}
}
TY  - JOUR
AU  - Prerna Bihani
AU  - Renling Jin
TI  - Kneser’s theorem for upper Banach density
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2006
SP  - 323
EP  - 343
VL  - 18
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/
DO  - 10.5802/jtnb.547
LA  - en
ID  - JTNB_2006__18_2_323_0
ER  - 
%0 Journal Article
%A Prerna Bihani
%A Renling Jin
%T Kneser’s theorem for upper Banach density
%J Journal de théorie des nombres de Bordeaux
%D 2006
%P 323-343
%V 18
%N 2
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/
%R 10.5802/jtnb.547
%G en
%F JTNB_2006__18_2_323_0
Prerna Bihani; Renling Jin. Kneser’s theorem for upper Banach density. Journal de théorie des nombres de Bordeaux, Volume 18 (2006) no. 2, pp. 323-343. doi : 10.5802/jtnb.547. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/

[1] Y. Bilu, Addition of sets of integers of positive density. The Journal of Number Theory 64 (1997), No. 2, 233–275. | MR | Zbl

[2] Y. Bilu, Structure of sets with small sumset. Asterisque 258 (1999), 77–108. | MR | Zbl

[3] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981. | MR | Zbl

[4] H. Halberstam, K. F. Roth, Sequences. Oxford University Press, 1966. | MR | Zbl

[5] C. W. Henson, Foundations of nonstandard analysis–A gentle introduction to nonstandard extension in Nonstandard Analysis: Theory and Applications. Ed. by N. J. Cutland, C. W. Henson, and L. Arkeryd. Kluwer Academic Publishers, 1997. | MR | Zbl

[6] R. Jin, Nonstandard methods for upper Banach density problems. The Journal of Number Theory, 91 (2001), 20–38. | MR | Zbl

[7] R. Jin, Standardizing nonstandard methods for upper Banach density problems in the DIMACS series Unusual Applications of Number Theory, edited by M. Nathanson. Vol. 64 (2004), 109–124. | MR | Zbl

[8] R. Jin, Inverse problem for upper asymptotic density. The Transactions of American Mathematical Society 355 (2003), No. 1, 57–78. | MR | Zbl

[9] R. Jin, Solution to the Inverse problem for upper asymptotic density. Journal für die reine und angewandte Mathematik 595 (2006), 121–166. | MR | Zbl

[10] T. Lindstrom, An invitation to nonstandard analysis in Nonstandard Analysis and Its Application. Ed. by N. Cutland. Cambridge University Press, 1988. | MR | Zbl

[11] M. B. Nathanson, Additive Number Theory–Inverse Problems and the Geometry of Sumsets. Springer, 1996. | MR | Zbl

[12] K. Petersen, Ergodic Theory. Cambridge University Press, 1983. | MR | Zbl

Cited by Sources: