Supposons que soit un ensemble d’entiers non négatifs avec densité de Banach supérieure (voir définition plus bas) et que la densité de Banach supérieure de soit inférieure à . Nous caractérisons la structure de en démontrant la proposition suivante : il existe un entier positif et un ensemble qui est l’union des suites arithmétiques [We call a set of the form an arithmetic sequence of difference and call a set of the form an arithmetic progression of difference . So an arithmetic progression is finite and an arithmetic sequence is infinite.] avec la même différence tels que et si est, pour chaque , un intervalle d’entiers tel que et la densité relative de dans approche , il existe alors un intervalle pour chaque tel que et .
Suppose is a set of non-negative integers with upper Banach density (see definition below) and the upper Banach density of is less than . We characterize the structure of by showing the following: There is a positive integer and a set , which is the union of arithmetic sequences [We call a set of the form an arithmetic sequence of difference and call a set of the form an arithmetic progression of difference . So an arithmetic progression is finite and an arithmetic sequence is infinite.] with the same difference such that and if for each is an interval of integers such that and the relative density of in approaches , then there is an interval for each such that and .
Mots clés : Upper Banach density, inverse problem, nonstandard analysis
@article{JTNB_2006__18_2_323_0, author = {Prerna Bihani and Renling Jin}, title = {Kneser{\textquoteright}s theorem for upper {Banach} density}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {323--343}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.547}, mrnumber = {2289427}, zbl = {05135393}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/} }
TY - JOUR AU - Prerna Bihani AU - Renling Jin TI - Kneser’s theorem for upper Banach density JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 323 EP - 343 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/ DO - 10.5802/jtnb.547 LA - en ID - JTNB_2006__18_2_323_0 ER -
%0 Journal Article %A Prerna Bihani %A Renling Jin %T Kneser’s theorem for upper Banach density %J Journal de théorie des nombres de Bordeaux %D 2006 %P 323-343 %V 18 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/ %R 10.5802/jtnb.547 %G en %F JTNB_2006__18_2_323_0
Prerna Bihani; Renling Jin. Kneser’s theorem for upper Banach density. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 323-343. doi : 10.5802/jtnb.547. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.547/
[1] Y. Bilu, Addition of sets of integers of positive density. The Journal of Number Theory 64 (1997), No. 2, 233–275. | MR | Zbl
[2] Y. Bilu, Structure of sets with small sumset. Asterisque 258 (1999), 77–108. | MR | Zbl
[3] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981. | MR | Zbl
[4] H. Halberstam, K. F. Roth, Sequences. Oxford University Press, 1966. | MR | Zbl
[5] C. W. Henson, Foundations of nonstandard analysis–A gentle introduction to nonstandard extension in Nonstandard Analysis: Theory and Applications. Ed. by N. J. Cutland, C. W. Henson, and L. Arkeryd. Kluwer Academic Publishers, 1997. | MR | Zbl
[6] R. Jin, Nonstandard methods for upper Banach density problems. The Journal of Number Theory, 91 (2001), 20–38. | MR | Zbl
[7] R. Jin, Standardizing nonstandard methods for upper Banach density problems in the DIMACS series Unusual Applications of Number Theory, edited by M. Nathanson. Vol. 64 (2004), 109–124. | MR | Zbl
[8] R. Jin, Inverse problem for upper asymptotic density. The Transactions of American Mathematical Society 355 (2003), No. 1, 57–78. | MR | Zbl
[9] R. Jin, Solution to the Inverse problem for upper asymptotic density. Journal für die reine und angewandte Mathematik 595 (2006), 121–166. | MR | Zbl
[10] T. Lindstrom, An invitation to nonstandard analysis in Nonstandard Analysis and Its Application. Ed. by N. Cutland. Cambridge University Press, 1988. | MR | Zbl
[11] M. B. Nathanson, Additive Number Theory–Inverse Problems and the Geometry of Sumsets. Springer, 1996. | MR | Zbl
[12] K. Petersen, Ergodic Theory. Cambridge University Press, 1983. | MR | Zbl
Cité par Sources :