Interpolation of entire functions on regular sparse sets and q-Taylor series
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 397-404.

Nous donnons une démonstration alternative d’un théorème de Ismail et Stanton et appliquons cela à des fonctions entières arithmétiques.

We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.

@article{JTNB_2005__17_1_397_0,
     author = {Michael Welter},
     title = {Interpolation of entire functions on regular sparse sets and $q${-Taylor} series},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {397--404},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.497},
     zbl = {1079.30032},
     mrnumber = {2152231},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.497/}
}
Michael Welter. Interpolation of entire functions on regular sparse sets and $q$-Taylor series. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 397-404. doi : 10.5802/jtnb.497. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.497/

[1] J.-P. Bézivin, Sur les points où une fonction analytique prend des valeurs entières. Ann. Inst. Fourier 40 (1990), 785–809. | Numdam | MR 1096591 | Zbl 0719.30022

[2] J.-P. Bézivin, Fonctions entières prenant des valeurs entières ainsi que ses dérivées sur des suites recurrentes binaires. Manuscripta math. 70 (1991), 325–338. | MR 1089068 | Zbl 0733.30022

[3] P. Bundschuh, Arithmetische Eigenschaften ganzer Funktionen mehrerer Variablen. J. reine angew. Math. 313 (1980), 116–132. | MR 552466 | Zbl 0411.10009

[4] M. E. H. Ismail, D. Stanton, q-Taylor theorems, polynomial expansions, and interpolation of entire functions. Journal of Approximation Theory 123 (2003), 125–146. | MR 1985020 | Zbl 1035.30025

[5] S. Lang, Algebra. 3rd edition, Addison-Wesley (1993). | MR 197234 | Zbl 0848.13001

[6] M. Welter, Ensembles régulièrement lacunaires d’entiers et fonctions entières arithmétiques. J. Number Th. 109 (2004), 163–181. | MR 2098482 | Zbl 1068.30020