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Interpolation of entire functions on regular sparse
sets and q-Taylor series

par MICHAEL WELTER

RÉSUMÉ. Nous donnons une démonstration alternative d’un théo-
rème de Ismail et Stanton et appliquons cela à des fonctions en-
tières arithmétiques.

ABSTRACT. We give a pure complex variable proof of a theo-
rem by Ismail and Stanton and apply this result in the field of
integer-valued entire functions. Our proof rests on a very general
interpolation result for entire functions.

1. Introduction

In [4] (see also the references there) Ismail and Stanton established q-
analogues of Taylor series expansions of entire functions, so-called q-Taylor
series, and gave some applications of these. Their proofs depend heavily
on the theory of basic hypergeometric functions.

In this note we will deduce one of their theorems from an interpolation
formula which we will prove in section 2. In section 3 we will give another
application of the q-Taylor series in the field of the so-called integer-valued
entire functions and give a first answer on a question asked by Ismail and
Stanton in [4].
We start with some definitions and notations. Throughout this section

let q, a E (C ~ ~0~ with Iql ~ 1. We denote by Q the maximum of Iql and

The q-shifted factorials are defined by

We put

and
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for n = 0,1, 2, 3, .... Finally we denote for an entire function f

where as usual I f 1, : := I f (z) I - The theorem of Ismail and Stanton
(Theorem 3.3 in [4]) states
Theorem 1.1. Let f be an entire functions with Q( f )  1/(2log Q). Then
we have _for all z E C

with

Remark. Ismail and Stanton state the theorem only for real a, q with
0a,q1.

2. Interpolation of entire functions on regular sparse sets

For subsets X C C we put = card {x E r}.
Definition. We call a subset X C C regular sparse, if X is infinite, discrete
and satisfies the following condition:
There exist 0 +oo [ and T E R such that

In [6] we studied entire functions f that are integer-valued on regular
sparse sets X C Z. There we proved the following characterization of
regular sparse sets (see [6], Lemma 1).
Lemma 2.1. Let X be an infinite, discrete subset of C. Then the following
three statements are equivalent:

(i) X is regular sparse.
(ii) For all 0 +oo[ there exists a T E R such thatox ~re~  (r)+

(r)) when r - +oo.

Therefore it is useful to define

and the main result of this section states as follows.
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Theorem 2.2. Let X be a regular sparse subset and let (xn)ncN" be

the sequence of all distinct elements of X ordered by increasing modulus.
Then we have for all entire functions f with

the series expansion

where Px,o(z) := 1 and PX,n(z) := (z - Xn-l)PX,n-l(Z) for all n &#x3E; 1 and

Therefore, every such f is uniquely, determined by its values on X.

Remark. In [6] we proved that the entire function g which is defined by

has a growth bounded by

for all sufficiently large r, where

Before we prove the above theorem, we will deduce theorem 1.1 from it.

Proof of theorem 1.1. We set X = E Nol. Then we have qbx (r) =
logr/ log Q + O(1) when r ~ +oo, = 0 and A(X) = 1/2. Hence (3)
becomes Q( f )  1/(2 log Q).
The polynomial a) is of degree n in z and has the property

Øn(Zk; a) = 0 for 1~ = 0, ... , n - 1. Hence 0,, (z; a) = cn Px,,,, (z) with
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We have

and

From this we deduce
/_’B

And therefore we get from (4)

This proves Theorem 1.1 D

Proof of theorem 2.2. Without loss of generality we assume that I x I &#x3E; 1 for
all .r e X.

Let n be a positive integer, which we assume to be sufficiently large. Let
r be a real with r &#x3E; lxn-11. We will specify r a little bit later in the proof.
For every z C C with lzl  r we have (see e.g. Bundschuh [3])
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and

Obviously (4) follows from (8) by Cauchy’s integral formula.
To prove the theorem, it is therefore enough to prove that under the

assumptions of Theorem 2.2 the reminder Rx,n converges uniformly against
the zero function on any compact subset of C.
We suppose that we have log qqb x (r) log r with a constant 7  ~yo

for all sufficiently large r. Further we fix a 0 [ such that

For 0 &#x3E; 1, we have 2 ]rn ]  IXnl8 =: r for all sufficiently large n. There-
fore we can estimate

The last equality follows from the fact that (Ixnl) = n + 0 (1) for all n.
By Proposition 1 of [6] we know, that for regular sparse sets X there are
constants c, a &#x3E; 0 such that log cna for all n. Hence the limit

exists. This leads to

and for all with lçl = r

Further we have if n and therefore r is sufficiently large

Here we have again used the fact that the set X is regular sparse.
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If we further assume, that 2J  r, then we get from (9)

which shows that RX,n(z) converges against zero when n tends to infinity.
Hence the theorem is proven. 0

3. Application of Theorem 1.1 to integer-valued entire functions

In this section we will give some statements about entire functions that
are integer-valued on the sequence zn = (aqn + a-lq-n)/2.
The following theorem is a corollary to Theorem 1 in [6], a general result

on integer-valued entire functions on regular sparse sets X c Z. From this
theorem one easily deduces

Theorem 3.1. Let a, q E ~C ~ 0 1 1 such that zn := 1(aqn +
for every n E N‘o, and let f be an entire function such that

f(zn) E Z for every n E No and

for all sufficiently large r. Then f is a polynorrtial function.

Remark. The case a = ::!:1 was essentially treated by B6zivin in ~1, 2). By
using an interpolation series method he obtained a better upper bound for
q than that in the above theorem. The sequence (zn) is the solution of the
linear difference equation un+1 = (q -I- q-1)un - with the initial values

uo = (a + a-l)/2 and al = (aq+a-lq-l)/2. Hence the condition zn E Z
for all n E No is obviously satisfied if the three numbers

are rational integers. Therefore the theorem above covers not only the case
a = ::i::1 and we get some new applications with a, q both lying in the same
real quadratic number field.

From the q-Taylor theorem 1.1, we can deduce the following result, which
covers another case.

Theorem 3.2. Let K be Q or an imaginary- quadratic number field and
Ooc be its ring of integers. Further let a, q E Ooc B (0) with I q I &#x3E; 1 and

a2 tt fq-’Iv E NJ. If f is an entire function satisfying f (zn) E Ooc for all
n E No and

for all sufficiently large r, then f is a polynomial function.
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Proof. If 4bd denotes the d-th cyclotomic polynomial, then we have for all
n E N and k E {0, ... , n} (see Lang [5], p. 279f.)

Obviously we have

Hence, if we put Dn := (?;?)~ fl2,1l(l - # 0, it follows from (5)
and (6) that D,, Ax,,, E Z [a, q] for all n E No. Therefore 1, if

DnAx,n is not equal to zero.
On the other hand, we find by (8) like in the proof of Theorem 2.2, again

withr:= IZn Ie

Obviously the two infinite products

converge, and therefore we get

We now chose 0 = 1 / (2~y) . If q  1/10 then the upper bound of I
is less than 1 for all sufficiently large n. Hence DnAx,n = 0 for this n.
For we know that Dn is not zero, this implies that vanishes for all

sufficiently large n. This proves the theorem.
0
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