Systems of quadratic diophantine inequalities
Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 217-236.

Let Q 1 ,,Q r be quadratic forms with real coefficients. We prove that for any ϵ>0 the system of inequalities |Q 1 (x)|<ϵ,,|Q r (x)|<ϵ has a nonzero integer solution, provided that the system Q 1 (x)=0,,Q r (x)=0 has a nonsingular real solution and all forms in the real pencil generated by Q 1 ,,Q r are irrational and have rank >8r.

Soient Q 1 ,...,Q r des formes quadratiques avec des coefficients réels. Nous prouvons que pour chaque ε>0 le système |Q 1 (x)|<ε,...,|Q r (x)|<ε des inégalités a une solution entière non-triviale si le système Q 1 (x)=0,...,Q r (x)=0 a une solution réelle non-singulière et toutes les formes i=1 r α i Q i , α=(α 1 ,...,α r ) s ,α0 sont irrationnelles avec rang >8r.

Published online:
DOI: 10.5802/jtnb.488
Wolfgang Müller 1

1 Institut für Statistik Technische Universität Graz 8010 Graz, Austria
@article{JTNB_2005__17_1_217_0,
     author = {Wolfgang M\"uller},
     title = {Systems of quadratic diophantine inequalities},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {217--236},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.488},
     zbl = {1082.11020},
     mrnumber = {2152222},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/}
}
TY  - JOUR
TI  - Systems of quadratic diophantine inequalities
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 217
EP  - 236
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/
UR  - https://zbmath.org/?q=an%3A1082.11020
UR  - https://www.ams.org/mathscinet-getitem?mr=2152222
UR  - https://doi.org/10.5802/jtnb.488
DO  - 10.5802/jtnb.488
LA  - en
ID  - JTNB_2005__17_1_217_0
ER  - 
%0 Journal Article
%T Systems of quadratic diophantine inequalities
%J Journal de Théorie des Nombres de Bordeaux
%D 2005
%P 217-236
%V 17
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.488
%R 10.5802/jtnb.488
%G en
%F JTNB_2005__17_1_217_0
Wolfgang Müller. Systems of quadratic diophantine inequalities. Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 217-236. doi : 10.5802/jtnb.488. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/

[1] V. Bentkus, F. Götze, On the lattice point problem for ellipsoids. Acta Arith. 80 (1997), 101–125. | MR: 1450919 | Zbl: 0871.11069

[2] V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms. Annales of Mathematics 150 (1999), 977–1027. | MR: 1740988 | Zbl: 0979.11048

[3] E. Bombieri, H. Iwaniec, On the order of ζ(1/2+it). Ann. Scuola Norm Sup. Pisa (4) 13 (1996), 449–472. | Numdam | Zbl: 0615.10047

[4] J. Brüdern, R.J. Cook, On simultaneous diagonal equations and inequalities. Acta Arith. 62 (1992), 125–149. | MR: 1183985 | Zbl: 0774.11015

[5] H. Davenport, Indefinite quadratic forms in many variables (II). Proc. London Math. Soc. 8 (1958), 109–126. | MR: 92808 | Zbl: 0078.03901

[6] R. J. Cook, Simultaneous quadratic equations. Journal London Math. Soc. (2) 4 (1971), 319–326. | MR: 289406 | Zbl: 0224.10021

[7] R. Dietmann, Systems of rational quadratic forms. Arch. Math. (Basel) 82 (2004), no. 6, 507–516. | MR: 2080049 | Zbl: 02106451

[8] E. D. Freeman, Quadratic Diophantine Inequalities. Journal of Number Theory 89 (2001), 269–307. | MR: 1845239 | Zbl: 1008.11012

[9] G. A. Margulis, Discrete subgroups and ergodic theory. In ”Number Theory, Trace Fromulas and Discrete Groups (Oslo, 1987)”, 377–398, Academic Press, Boston, 1989. | MR: 993328 | Zbl: 0675.10010

[10] W. M. Schmidt, Simultaneous rational zeros of quadratic forms. Séminaire Delange-Pisot-Poitou (Théorie des Nombres), Paris 1980-1981, Progr. Math. 22 (1982), 281–307. | MR: 693325 | Zbl: 0492.10017

[11] H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms. Acta Arith. 9 (1964), 261–270. | MR: 167461 | Zbl: 0128.04702

Cited by Sources: