Let be quadratic forms with real coefficients. We prove that for any the system of inequalities has a nonzero integer solution, provided that the system has a nonsingular real solution and all forms in the real pencil generated by are irrational and have rank .
Soient des formes quadratiques avec des coefficients réels. Nous prouvons que pour chaque le système des inégalités a une solution entière non-triviale si le système a une solution réelle non-singulière et toutes les formes , sont irrationnelles avec rang .
@article{JTNB_2005__17_1_217_0, author = {Wolfgang M\"uller}, title = {Systems of quadratic diophantine inequalities}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {217--236}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.488}, mrnumber = {2152222}, zbl = {1082.11020}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/} }
TY - JOUR AU - Wolfgang Müller TI - Systems of quadratic diophantine inequalities JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 217 EP - 236 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/ DO - 10.5802/jtnb.488 LA - en ID - JTNB_2005__17_1_217_0 ER -
%0 Journal Article %A Wolfgang Müller %T Systems of quadratic diophantine inequalities %J Journal de théorie des nombres de Bordeaux %D 2005 %P 217-236 %V 17 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/ %R 10.5802/jtnb.488 %G en %F JTNB_2005__17_1_217_0
Wolfgang Müller. Systems of quadratic diophantine inequalities. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 217-236. doi : 10.5802/jtnb.488. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.488/
[1] V. Bentkus, F. Götze, On the lattice point problem for ellipsoids. Acta Arith. 80 (1997), 101–125. | MR | Zbl
[2] V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms. Annales of Mathematics 150 (1999), 977–1027. | MR | Zbl
[3] E. Bombieri, H. Iwaniec, On the order of . Ann. Scuola Norm Sup. Pisa (4) 13 (1996), 449–472. | Numdam | Zbl
[4] J. Brüdern, R.J. Cook, On simultaneous diagonal equations and inequalities. Acta Arith. 62 (1992), 125–149. | MR | Zbl
[5] H. Davenport, Indefinite quadratic forms in many variables (II). Proc. London Math. Soc. 8 (1958), 109–126. | MR | Zbl
[6] R. J. Cook, Simultaneous quadratic equations. Journal London Math. Soc. (2) 4 (1971), 319–326. | MR | Zbl
[7] R. Dietmann, Systems of rational quadratic forms. Arch. Math. (Basel) 82 (2004), no. 6, 507–516. | MR | Zbl
[8] E. D. Freeman, Quadratic Diophantine Inequalities. Journal of Number Theory 89 (2001), 269–307. | MR | Zbl
[9] G. A. Margulis, Discrete subgroups and ergodic theory. In ”Number Theory, Trace Fromulas and Discrete Groups (Oslo, 1987)”, 377–398, Academic Press, Boston, 1989. | MR | Zbl
[10] W. M. Schmidt, Simultaneous rational zeros of quadratic forms. Séminaire Delange-Pisot-Poitou (Théorie des Nombres), Paris 1980-1981, Progr. Math. 22 (1982), 281–307. | MR | Zbl
[11] H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms. Acta Arith. 9 (1964), 261–270. | MR | Zbl
Cited by Sources: