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Systems of quadratic diophantine inequalities

par WoLFGANG MULLER

RESUME. Soient Qi,...,Q, des formes quadratiques avec des
coefficients réels. Nous prouvons que pour chaque € > 0 le systéme
|Q1(z)| < e,...,|Q(x)] < € des inégalités a une solution entiere
non-triviale si le systeme @Qq(z) = 0,...,Q.(x) = 0 a une
solution réelle non-singuliere et toutes les formes > ., ;Q;,
a=(a1,...,a.) € R® a # 0 sont irrationnelles avec rang > 8r.

ABSTRACT. Let @Qq,...,Q, be quadratic forms with real coeffi-
cients. We prove that for any ¢ > 0 the system of inequalities
|Q1(x)] < €,...,]Qr(z)| < € has a nonzero integer solution, pro-
vided that the system @Q1(z) = 0,...,Q,-(z) = 0 has a nonsin-
gular real solution and all forms in the real pencil generated by
@1, ..,Q, are irrational and have rank > 8r.

1. Introduction

Let Qq,...,Q, be quadratic forms in s variables with real coefficients.
We ask whether the system of quadratic inequalities
(1.1) |Q1(z)| < €,...,|Q:(x)] <e

has a nonzero integer solution for every e > 0. If some Q; is rational' and
e is small enough then for x € Z* the inequality |Q;(z)| < € is equivalent to
the equation @Q;(x) = 0. Hence if all forms are rational then for sufficiently
small € the system (1.1) reduces to a system of equations. In this case
W. ScHMIDT [10] proved the following result. Recall that the real pencil
generated by the forms Q1,...,Q, is defined as the set of all forms

,
(1.2) Qo =Y i@

i=1
where o = (a1,...,a,) € R", @ # 0. The rational and complex pencil are
defined similarly. Suppose that Q1,...,Q, are rational quadratic forms.
Then the system Q1(x) =0,...,Q,(x) = 0 has a nonzero integer solution

provided that

1A real quadratic form is called rational if its coefficients are up to a common real factor
rational. It is called irrational if it is not rational.
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(i) the given forms have a common nonsingular real solution, and either
(iia) each form in the complex pencil has rank > 472 + 4r, or
(iib) each form in the rational pencil has rank > 4r3 + 472,

Recently, R. DIETMANN [7] relaxed the conditions (iia) and (iib). He
replaced them by the weaker conditions

(iia’) each form in the complex pencil has rank > 2r% + 3r, or
(iib’) each form in the rational pencil has rank > 273 if 7 is even and rank
> 273 + 2r if 7 is odd.

If » = 2 the existence of a nonsingular real solution of Qi(z) = 0
and Q2(z) = 0 follows if one assumes that every form in the real pencil
is indefinite (cf. SWINNERTON-DYER [11] and COOK [6]). As noted by
W. ScHMIDT [10] this is false for r > 2.

We want to consider systems of inequalities (1.1) without hidden equa-~
lities. A natural condition is to assume that all forms in the real pencil are
irrational. Note that if Q, is rational and e is small enough, then (1.1) and
x € Z° imply Q. (z) = 0. We prove

Theorem 1.1. Let Q1,...,Q, be quadratic forms with real coefficients.
Then for every e > 0 the system (1.1) has a nonzero integer solution pro-
vided that

(i) the system Q1(x) =0,...,Q,(x) =0 has a nonsingular real solution,
(ii) each form in the real pencil is irrational and has rank > 8r.

In the case r = 1 much more is known. G.A. MARGULIS [9] proved that
for an irrational nondegenerate form @) in s > 3 variables the set {Q(x) |
x € Z°} is dense in R (Oppenheim conjecture). In the case r > 1 all known
results assume that the forms Q; are diagonal®>. For more information on
these results see E.D. FREEMAN [8] and J. BRUDERN, R.J. Cook [4].

In 1999 V. BENTKUS and F. GOTZE [2] gave a completely different proof
of the Oppenheim conjecture for s > 8. We use a multidimensional variant
of their method to count weighted solutions of the system (1.1). To do this
we introduce for an integer parameter N > 1 the weighted exponential sum

(1.3) Sn(a) = > wn(z)e(Qul(x)) (2 €R).

TELS
Here @, is defined by (1.2), e(x) = exp(2miz) as usual , and
(1.4) wy(@) = Y. pn(n)pn(n2)py (ng)py (n4)

ni+n2+n3+ns=x

2Note added in proof: Recently, A. GORODNIK studied systems of nondiagonal forms. In
his paper On an Oppenheim-type conjecture for systems of quadratic forms, Israel J. Math.
149 (2004), 125-144, he gives conditions (different from ours) that guarantee the existence of a
nonzero integer solution of (1.1). His Conjecture 13 is partially answered by our Theorem 1.1.
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denotes the fourfold convolution of py, the density of the discrete uniform
probability distribution on [—N, N]*NZ?°. Since wy is a probability density
on Z° one trivially obtains |Sy(a)| < 1. The key point in the analysis of
BENTKUS and GOTZE is an estimate of Sy(a + €)Sny(a — €) in terms of
€ alone. Lemma 2.2 gives a generalization of their estimate to the case
r > 1. It is proved via the double large sieve inequality. It shows that
for N=2 < |e| < 1 the exponential sums Sy (o — €) and Sy (o + €) cannot
be simultaneously large. This information is almost sufficient to integrate
|Sn ()| within the required precision. As a second ingredient we use for
0 < Tp <1 <7y the uniform bound

(1.5) lim sup |Sn(a)]=0.

N—=00 Ty <|a|<Ty

Note that (1.5) is false if the real pencil contains a rational form. The proof
of (1.5) follows closely BENTKUS and GOTZE [2] and uses methods from the
geometry of numbers.

2. The double large sieve bound

The following formulation of the double large sieve inequality is due to

BENTKUS and GOTZE [2]. For a vector T = (T, ...,T;) with positive real
coordinates write T~! = (T, *,...,T; ') and set
(2.1) B(T) =A{(z1,...,x5) e R® | |j| < T} for 1 < j <s}.

Lemma 2.1 (Double large sieve). Let p,v denote measures on R® and let
S, T be s-dimensional vectors with positive coordinates. Write

(2.2) J= /B N ( /B (T)g<x>h<y>e<<x,y>>du<x>> du(y),

where (.,.) denotes the standard scalar product in R® and g,h : R® — C are
measurable functions. Then

[J? < AQRS™Y g, ) AQRT ™ hov) [T+ ST5),
Jj=1

where

A(S,g.1) = / ( / N du(y)> 19(2)] du(z) .
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The implicit constant is an absolute one. In particular, if |g(x)| < 1 and
|h(x)| <1 and p,v are probability measures, then
(2.3)

s

7> < sup p(x + B(2S™)) sup v(z + BERT) [[1+ S,T5).

z€ER? z€ER? j=1
Remark. This is Lemma 5.2 in [1]. For discrete measures the lemma is
due to E. BoMBIERI and H. IWANIEC [3]. The general case follows from
the discrete one by an approximation argument.

Lemma 2.2. Assume that each form in the real pencil of Q1,...,Q, has
rank > p. Then the exponential sum (1.3) satisfies
(2.4) Sn(a—€)Sn(a+€) < u(le])? (a,e € R"),
where

1 0<t< N2,

(t) _ t71/2N71 N2 <t< N1 7
=9 a2 Nl<i<1,
1 t>1.

Proof. Set S = Sn(a — €)Sn(a+ €). We start with
S= Y wn@uwn(y)e(Qa-e(®) + Qure(y))

RISV
= > wn(bm-m)wn(mtn)e(Qae(3m—m) + Qate(Lmin))
igliny

= Y wn(m-m)wy(Lmin)e(3Qa(m) + 1Qa(n) + (m, Qen)).

m=n(2)
[m|oo,nfoo <8N

To separate the variables m and n in the weight function write

(2. wn(o) = [ nO)e(~(0.2))do.
where B = (—1/2,1/2]° and h denotes the (finite) Fourier series
ho) = 3 wn(R)e((0,K))

keZs

Since w = px * py * py * py we find h(0) = hy ()2, where

= > pnxpn(k)e((0, k).

keZs
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Now set

a(m) = e(5(Qa(m) — (01 + 62,m))),

b(n) = e(3(Qa(n) — (b1 — b2,n))).
Using (2.5) we find
K= ‘ / / ODR() > a(m)b(n)e((m,Q€n>)d91d92‘

m=n(2)
[mloo;|nloo <8N

<(/ Ih(H)\d0>2 swp | atmpblmeim, Q).

01,02€B m=n(2)
[m|oo;|nloo <8N

N[ —

Note that a(m) and b(n) are independent of e. Furthermore, by Bessel’s
inequality

| inte |d9—/\hN J2do < S (o # pi(k
keZs
2N +1)"* > pyxpn(k) < (2N +1)7°
keZs
Hence

S< N> % sup( ST atm)b(n)e((m,Qun))| .

we{0,1}s 01:02€B

m=n=w(2)
[m|oo;|nloo <8N

We are now in the position to apply Lemma 2.1. Denote by Aq,..., As
the eigenvalues of Q. ordered in such a way that [A;| > -+ > |As]. Then
Q. = UTAU, where U is orthogonal and A = diag(\1,...,\s). Set AY/? =
diag(|\1]'/2,. .., |Xs|Y/?), E = diag(sgn(\1),...,sgn()s)) and

M ={AYV2Um | m € Z°,m = w(2), |m|s < 8N},

N = {EAN2Um | m € Z°,m = w(2), |m|e <8N}
Furthermore, let u denote the uniform probability distribution on M and v
the uniform probability distribution on N.  Choose S; = T; =
1+ 8y/s|)\j|'/2N. Then 2 € M implies € B(T) and y € N implies
y € B(S). If follows by (2.3) that

2
NS a(m)b(me(m, Qen))|

m=n=w(2)
[moo,nloo <8N

<<N_zs<supA )H (1+|N|N?),

rERS
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where
Alz) = #{m € Z° | Im|os <8N, m = w(2),AY?Um — z € B(25~ 1)}
< H#{z €UL® | |2l < N, [Nz — 25] < S5}

S
< [ min(N, 1+ AN Y.
j=1

Hence
S < [ (N
j=1

with fi(t) = N~Y(1 4+ t'/2N)min(N,1 4+ t'N~1). To prove (2.4) we have
to consider the case N=2 < |¢|] < 1 only. Otherwise the trivial bound
|Sn(a)] <1 is sufficient. Since A; = \;(e) varies continuously on R" \ {0}
and Aj(ce) = c)j(e) for ¢ > 0 there exist constants 0 < ¢; < ¢; < oo such
that

(2.6) ¢ilel <Aj(e)

If N=2 < |¢] <1 then |\j| < 1 and ii(|A;]) < 1 for all j < s. Further-
more, for j < p we find |\;| < |¢| and ji(|)\;]) < max(|]e| V2N [¢[1/2).
Altogether this yields

p
§ < [T (A < max(je| 2N, 162 < ple])?
j=1

3. The uniform bound

Lemma 3.1 (H. DAVENPORT [5]). Let Li(z) = A\jix1 + -+ + \iszs be s
linear forms with real and symmetric coefficient matriz (X\ij)1<i j<s. Denote
by ||.|| the distance to the nearest integer. Suppose that P > 1. Then the
number of x € Z° such that

|2]oo < P and || Li(z)|| < P! (1<i<s)

is < (My...Mg)~'. Here My,..., M, denotes the first s of the 2s succes-
sive minima of the convex body defined by F(x,y) < 1, where for z,y € R®

F(l',y) :maX(P’Ll(x)_ylla"'7P|L8(x)_y8‘7p_1’x1‘7'"7P_1‘$SD'
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Lemma 3.2. Assume that each form in the real pencil of Q1,...,Q, is
wrrational. Then for any fived 0 < Ty < T7 < o0

lim sup |Sn(a)]=0.
N=00 Ty<al<Ty

Proof. We start with one Weyl step. Using the definition of wy we find
[Sn(@))* = > wn(@)wy(y)e(Qaly) — Qu(x))

T, YELS

= Y ) wn@wn(@+ 2)e(Qalz) + 2(2, Qax))

z€LS  xEZSs
|z]co <8N

=N+ Y Y e(Qalz) +2(2,Qax)) .

mq,ng,2 el (m;,n;,z)

Here the first sum is over all my,ma, ms, n1,n2, ng, z € Z° with |m;joc < N,
[Miloo < N, |2|oo < 8N and I(my,n;, z) is the set

{x €Z°||x—n1—n2—n3lec <N, |[x4+2—m1 —mg —m3lec < N}.

It is an s-dimensional box with sides parallel to the coordinate axes and
side length <« N. By Cauchy’s inequality it follows that

Sn@f < N7 ST | ST el2(2,Qaz))

mi,ni 2z xel(mg,n;g,z)

< N7 ST [ min (12, Qa2 ) .

|Z|00§8N i=1

‘ 2

Here we used the well known bound
S
> el(ay)) < [J[min(Ll, [(es w17,
xely X x1g i=1

where I; are intervals of length |I;| > 1 and e; denotes the i-th unit vector.
Set

N(a) =#{z € Z° | |z]oc < 16N, [|2(e;, Quz)|| < 1/16N for1 <i < s}.
We claim that
(3.1) ISn()]* < N3N (o).
To see this set

Dim(a)=#{z € Z° | |z|c0 < 8N, ”fé—z_vl <H{2(ei, Quz) } < fgafori < s},

where {z} denotes the fractional part of . Then D, () < NM(a) for all
m = (m1,...,ms) with 1 <m; < 16N. Note that if z; and zy are counted
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in Dy, (a) then 21 — 29 is counted in N (). It follows that

S
16N 16N 2
Sx(@)' < N33 Dyu(a) [ win (N, 4 )
1<m;<16N i=1 m; — 1 16N — m;

—3s sﬁ
<N #N(@) > Hm2

1<m;<8Ni=1"""1
< N7°N(a).

To estimate N («) we use Lemma 3.1 with P = 16N and L;(z) = 2(e;, Qo)
for 1 <14 <'s. This yields

(3.2) N(a) < (Mig... Mgo)™h,

where My o < -+ < M, o are the first s from the 2s successive minima of
the convex body defined in Lemma 3.1.

Now suppose that there exists an ¢ > 0, a sequence of real numbers
N,, — oo and o™ € R" with Tj < |a(”)] < T} such that

(3.3) |Sn, (a™)] > €.
By (3.1) and (3.2) this implies

S
—1
64]\75 < (HMi,a(”)) .
=1

. _ . _ -1
Since (16N,,)~! < M, o) < M; ) we obtain e*N < N3 1]\4570[<
this proves

and

n)

(16N,) ™" < My gy < -+ < My < (€'N,) 71

By the definition of the successive minima there exist l‘gn), y(-n) € Z° such

that (xgn),yyl)), ey (xgn),ygn)) are linearly independent and M, ) =

F(x§”)7y§”))_ Hence for 1 <1i,j <s

ILi(z{”) — ') < N; 2,
el < 1.

Since |a(™| < T} this inequalities imply ]y§7z)\ <7, 1. This proves that the
integral vectors
Wy, = (acgn),yYL), oz gy (n>1)

are contained in a bounded box. Thus there exists an infinite sequence
(N )k>1 with Wy, = W, for k > 1. The compactness of {o € R* | Tp <
o] < Ti} implies that there is a subsequence (ng)r>1 of (n})r>1 with
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limy oo ™) = a0 and Ty < |09 < Ty. Let z; = $§nk) and y; = yj(-n’“)
for 1 < j <s. Then z; and y; are well defined and

(34) yj = (L1(z;), ..., Ls(zj)) = 2Quz;  (1<j<s).

We claim that x1,...,xs are linearly independent. Indeed, suppose that
there are g; such that 377, gjz; = 0. Then 3°7_, ¢jy; = 0 by (3.4). This
implies Z§:1 ¢j(xj,y;) = 0 and the linear independence of (x;,y;) yields
gj = 0 for all j. The matrix equation 2Q o) (21,...,%s) = (Y1,---,Ys)
implies that @) is rational. By our assumptions this is only possible if
a® = 0, contradicting |a(?)| > Ty > 0. This completes the proof of the
Lemma. [l

Lemma 3.3. Assume that each form in the real pencil of Q1,...,Q, is
irrational and has rank > 1. Then there ezists a function T1(N) such that
T1(N) tends to infinity as N tends to infinity and for every 6 > 0

lim sup |Sn(a)] =0.

N=00 No-2<ja|<T1 (W)
Proof. We first prove that there exist functions Ty(N) < T1 (V) such that
To(N) | 0 and T1(N) T oo for N — oo and

(3.5) lim sup |Sn(a)] =0.
N=00 13 (N)<[o]<T1(N)

From Lemma 3.2 we know that for each m € N there exist an N, with

|Sn ()] < e for N >N, and e <l|a| <m.
m m
Without loss of generality we assume that (NV,,)m>1 is increasing. For
Ny < N < Npyq define Ty(N) = L, T1(N) = m and for N < Ny set
To(N) = T1(N) = 1. Obviously this choice satisfies (3.5). Replacing Tp(N)
by max(Ty(N), N~1) we can assume that N~! < Ty(N) < 1. Finally,
Lemma 2.2 with p > 1 yields

sup —|Sn(a)]
No=2<Ja|<To(N)

< sup w(|e|)? < max(N %2 Ty(N)/?)P = 0.
No=2<]a|<Tp(N)

4. The integration procedure

In this section we use Lemma 2.2 to integrate |Sy(a)|. It is here where
we need the assumption p > 8r.
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Lemma 4.1. For 0 < U < T set B{U,T) ={a € R" |U < |a| < T} and
define

~(U,T)= sup |Sy(a)l.
a€B(U,T)

Furthermore, let h be a measurable function with 0 < h(a) < (1 + |a|)7F,
k > r. If each form in the real pencil generated by Q1,...,Q, has rank > p
with p > 8¢ and if y(U,T) > 4P/ ) N=P/4 then

1—8r

/ 1Sn(a)|h(a) da < N~ min(1, U~ = Ny(U, T) % .
B(U,T)

Proof. Set B = B(U,T) and v = v(U,T). For | > 0 define
Bi={aecB|27"7 <|Sy(a) <271},

If I denotes the least non negative integer such that v > 27L~1 then

|Sn(a)| <y <27 and for any M > L

M
B = U B;UDyy,
I=L
where Dy = {a € B | |Sn(a)| <271}, By Lemma 2.2

[Sn(@)Sn(a+ )] < Culle])”

with some constant C' depending on Q1. . .,Q,. By considering C~'/2Sy(a)
instead of Sy () we may assume C' = 1. If « € B; and v+ € € By it follows
that

4771 < ISy (a)Sn(a+ €)] < pu(lel)?

If |e] < N~! this implies |e| < N=224H+1/P = § say, and if |¢| > N~ this
implies |e] > 274HD/P =  say. Note that § < p if 280+1)/P < N2 and
this is true for all | < M if

(4.1) M 41 < log(N?/*)/log?2.

We choose M as the largest integer less or equal to log(N%fy%*l)/ log2—1.
Then the assumption ~ > 4P/(87) N=P/* implies L < M, (4.1) and

(4.2) 27M « NTIALEP

To estimate the integral over B; we split B; in a finite number of subsets.
If B; # () choose any 31 € By and set By(f1) = {a € By | |a — 1] < §}. If
o € Bl\Bl(ﬂl) then ]a—ﬁ1| > p. If Bl\Bl(,Bl) 75 (0 choose B9 € BZ\BZ(Bl)
and set Bl(ﬂz) = {a € By \ Bl(,81) | ‘Oé — ,82| < 5} Then |a — 51’ >p
and |a — (2| > p for all a € By \ {B;(1) U Bi(52)}. Especially |51 — f2] >
p. In this way we construct a sequence fi,..., 3, of points in B; with
|Bi — B;j| > p for i # j. This construction terminates after finitely many
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steps. To see this note that the balls K,/5(8;) with center 8; and radius
p/2 are disjoint and contained in a ball with center 0 and radius T+ p/2.
Thus mvol(K,/3) < vol(Kry,/2) and this implies m < (14 T/p)". Since
By C WL, Bi(8i) C Wi, Ks(8;) we obtain

| ISw(@lhto) doc<2” lz/ (14 |af)*da

<<2’Z<5’”+2ZZ< ) / la|~* dov.
K, /2(Bi)

i<m i<m
18;1<1 18;1>1

Note that |a| < |3;] for o € K,(5;) if || > 1. If U > 1 the first sum is
empty and the second sum is < (§/p)" fa\>U/2 la| Fda < (6/p)TU— k=T,

If U <1 then the first sum contains < p~" summands; Thus both sums
are bounded by (6/p)". This yields

‘SN(O()’h(a) da <K 2_l (i) min(lj U_(k—r)) )
By

Altogether we obtain by (4.2) and the definition of 4, p, L

S LAY (hr)
g (=) min —(k=r -M o) do
/B|SN(a)|h(oz)doz < l:LZ <,0> (L,U )+ 2 h(a) d

M
—2r —1(1-8r/p) -M : —(k—r)
< (N ZEL2 +2 ) min(1,U )

< (N—2r2—L(1—8'r/p) + 2—M> min(l, U—(k—r))

< N7ZA8r /e min (1, U~ *—")y

5. Proof of Theorem 1.1

We apply a variant of the Davenport-Heilbronn circle method to count
weighted solutions of (1.1). Without loss of generality we may assume
e = 1. Otherwise apply Theorem 1.1 to the forms e 'Q;. We choose
an even probability density y with support in [—1,1] and x(z) > 1/2 for
|| < 1/2. By choosing X sufﬁciently smooth we may assume that its
Fourier transform satisfies Y(t) = [ x(z)e(tz) dz < (1 + [t])7"73. Set

K(vi,... v, HXUz-
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Then K () = [T;—; X(cwi). By Fourier inversion we obtain for an integer
parameter N > 1

AN) =) N (@)K (Qi(x),-... Qr(2))

HISYAS
Z wn(x / (1Q1(z) + - + 4, Qp(2)) K () davy . . . dev,
TEZLS
= [ Sy(a)K(a)da.
RT
Our aim is to prove for N > Ny, say,
(5.1) A(N)>cN™%

with some constant ¢ > 0. This certainly implies the existence of a non-
trivial solution of (1.1), since the contribution of the trivial solution z = 0
to A(N) is < N7* and s > p > 8r. To prove (5.1) we divide R" in a major
arc, a minor arc and a trivial arc. For § > 0 set

M={aecR"||a] < N2},
m={aecR | N?2<|a|] <TI(N)},
t={aeR"||a|>Ti(N)},

where T (V) denotes the function of Lemma 3.3. Using the bound K (o) <
(1 4+ |a|)™"3, Lemma 4.1 (with the choice U = Ti(N) and the trivial
estimate v(T1(N), ) <'1) implies

/ Sy(a)K(a)doa = O(N"¥Ty(N)™3) = o(N~27).

Furthermore, Lemma 4.1 with U = N%=2 and T = T1(N), together with
Lemma 3.3 yield

/ Sn(a)K(a) da = O(N~2"~(N°"2, T (N))

Thus (5.1) follows if we can prove that the contribution of the major arc is

1—8r

p)= O(N_Qr).

(5.2) / Sy()K(a)do > N2

6. The major arc

Lemma 6.1. Assume that each form in the real pencil of Q1,...,Q, has
rank > p. Let g,h : R® — C be measurable functions with |g| < 1 and
|h| < 1. Then for N > 1

—2s x e({x x al V2N
N, SR Qe de dy < (AN
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Proof. Note that the bound is trivial for |o| < N~2. Hence we assume
|o| > N=2. Denote by Ai,...,\s the eigenvalues of Q, ordered in such
a way that |A;] > --- > |X\s]. Then Q, = UTAU, where U is orthogonal
and A = diag(/\l,...,)\s). Write ¢ = (2,%), where 2 = (z1,...,2p) and
T = (Tps1,-- . Then

2s .
v /[NJV]S/NN (y)e((z, Quy)) dz dy

_ N—QS/ / g(U ™ )h(U y)e((x, Ay)) da dy
U[-N,N]s JU[-N,N]s

— N—2(s—p) ) T(7 77 7
o) =N [ o3 ) @) ded,
[Floo <V/sN 1=p+1
where
3 p
J(z,7) =N2p/ / §(£)h(y)€(z)\ixiyi)d£dy-
[7\/§N’\/§N]p [7\/§N9\/§N}p =1

Here §(z) = g(U ‘@)1 4(z)(z) with
A(T) = {z e R? [ (z,%) € U[-N, N’} C [=V/sN, /sN P,

and h is defined similarly. If |a| > N~2 then by (2.6) |\;| =< |a| > N2 for
i < p. Now we apply the double large sieve bound (2.3). For 1 < j <p
set S; = T; = \/s|A\j|N. Let p = v be the continuous uniform probability
distribution on [[%_,[~T},T;] and set g(z) = UM 2y, AT 2y)
and h(z) = h(sgn(A1)| M|~ 221, . .., sgn(A\y)|Ap| ' /22,). Then

my|2<<\// du(w) dviy)|

< H (1+ NN (A TN )2
j=1
< |a| PN,

Together with (6.1) this proves the lemma. O

For a € M we want to approximate Sy («) by
(6.2) Gola) = / 3w (@)e(Qalz + 2)) dr(2),

where m = Ig x Ig * Ig x Ig is the fourfold convolution of the continuous
uniform distribution on B = (—1/2,1/2]*. Set g(u) = e¢(Qa(u)). Denote by
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gu, the directional derivative of ¢ in direction u1, and set guyu, = (Guy )us
We use the Taylor series expansions

F() = fO) + [y f(r)dr
ﬂsz@HﬁWJ+ﬁ1—Tﬁ%) ,
FO1) = FO) + f/(0) + 2 £7(0) + L [ (1 = 7)2f"(r) dr

Applying the third of these relations to f(7) = g(x + Tu1), the second to
f(T) = gu,(x + Tug) and the first to f(7) = gu,u,(® + Tuz) we find for
u1, ug, uz € R*

g(z+u1) = 9(2)+gu, () + S Gurus (@) + 3 fy (1=7)2Guyuyuy (w4 71)dr
Guy ($+u2) = Guy (:L‘) + Guyug (m) + fo 1_T gU1U2U2 ($+Tu2)d7—7
Juiu; (l‘—f—u;;) = Guiu; (‘T) + fol Juiusus (x+7—u3)d7— .

Together we obtain the expansion

1
g(a:) = g(ac + ul) — Juq (.T + uQ) - §guw1 ('73 + U3) + Guiuy (QL’ + u3)
! 1
+ / { — Guiugus (x + TU3) + §gu1u1u3 (.%‘ + TU3)
0

1
+ (1 - T)gUIUZUQ (.le + Tu?) - 5(1 - T)qululul (.%' + Tul)}dT :

Multiplying with wy(z), summing over x € Z*®, and integrating u, ug, us
with respect to the probability measure 7 yields

SN(Oé) = Go(a) + G1<Oé> + Gg(Oz) + Gg(a) + R(Ck) y
where Go(«) is defined by (6.2),

— [ [ 3 un@guto+ 2 dn(w) dn(a).

TEZS
——//%ZZ:SwN )guu(@ + 2) dre(w) dr(2),
///g;w 2)gu (@ + 2) dre(u) dr(v) dr(2)
and
R(a) < sup Y wn@)gun(a+2)]

|U|oo:‘v‘007|w|007|z‘oo§1 TEZS
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An elementary calculation yields
gu(z) = Amie(Qu(x))(z, Qau) ,
guo(@) = (470)*e(Qa(2)){z, Qau)(w, Qav) + 47i e(Qu (@) (u, Qav) ,
Juow () = (471)’e(Qa(2)) (2, Qau) (2, Qav)(z, Qaw) + (4mi)?e(Qa(w))x
(2, Qav) . Qatw) + (&, Quu){v, Quw) + (, Quw) (1, Quv))

Since g,, and gy, are sums of odd functions (in at least one of the compo-
nents of u) we infer Gi(a) = 0 and G3(a) = 0. Furthermore, the trivial
bound guww (1) < [aPN3 + |a|?N for |z]s < N yields

R(a) < |a’N3 + |af>N .

This is sharp enough to prove

/ \R(0)R (0)| dar <</ AP N + |a 2N da
\a|§N‘S*2

Né 2
< / W N3 "N du

0
< N3-(@=9)(+3) | N1-2-0)(r+2)
< N—Qr—3+5(r+3) _ O(N—Qr) )

To deal with Gy and G we need a bound for

/ Z wy(z)L(z + 2)7e(Qalz + 2)) dr(z)

TEZLS
where L(z) = (x,Qqu) and 0 < j < 2. Using the definition of wy and m
we find that G ‘(oc u) is equal to

/ Z HpN i) ( (zitzi) )]6( (i (@i+ 2 ))dzl. ..dzy

T1,...,L4€ZLS 1=1 i=1

4 4
_ —4s )
= (2N+1) /m'w N (ZZ; xl) < Zl Z)) dxy. . .dxy.

Expanding L(zy + z9 + x3 + x4) and Qu(x1 + x2 + x3 + x4) this can be
bounded by

4
a N‘4s/{ N } 25 (@i, Qaz;))day . .. d
5N AL Qe (2 Qe

4

< ll%g?%}i:j (’C;\’[{Z)J /{ H hz($@)}€(2z<$“ Qa-rj»dlil ...dzyl.

i=1 i<j
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Here
hi(zi) = L(z:)" e(Qa(2:)) (|| N) i L0 vt 2y < 1.

Applying Lemma 6.1 to the double integral over 1 and x5 and estimating
the integral over x3 and x4 trivially we obtain uniformly in |u| < 1

Gi(a,u) < (Ja|N)|a|P/2N7P.

Setting

R"

we conclude for sufficiently small § > 0 and p > 8 (Go(a) = Go(a,0))

/ Go(a) K (a) da = Hy(N) — / Gola, 0)E (a) do
|O¢‘2N‘S_2
— Hy(N) +0(N—p(/ | P2 da + 1))
Né6-2<|a|<1

= Ho(N) + O(N~P~2=9=r/2)y L O(N~P)
= Hy(N) 4 o(N7%r).

Similarly, the explicit expression of g,,(z) and the definition of G;(a,u)
yield

/Ggff

=) 40 s [ (Gl + | Golow) K (e)do)

\u|oo<2

— Hy(N / o> da + 1))
N6-2<|a|<1

/ ||V P2 da + 1))
5— 2<]al<1

= Hy(N) + O(N ’" .
Hence

/ Sy(a)K(a)da = Hy(N) 4+ Hy(N) + o(N7?").

Altogether we have proved that for p > 8r
(6.3) A(N) = Ho(N) + Hy(N) + o(N~2").
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7. Analysis of the terms Hy(/N) and Hy(N)

Lemma 7.1. Denote by wn the fourfold convolution of the continuous uni-
form probability distribution on By = (=N —1/2, N +1/2]° and by fn the
density of my. Then

Ho(N) = / K(Qu(@). ... Qu(x)) f(z) da
and

Hy(N) = —¢ / K(@Q1(@),....Qr(@)Afx(z) de,

where Afy(x) =35 4 a;{é\’ (z). Furthermore, Afy(z) < N7572.

Proof. By Fourier inversion and the definition of wy and 7 = my we find

Hy(N) = . Go()K () dax
— [ 3 un@) [ elQulo+ 2)E(@)dadn(z)
AV
_ / S wn (@)K (Qi(z+ 2),. .. Q + 2)) dr(2)
FASY/AS

- / K(Qi(@),. . Qun(x)) dry (x).

This proves the first assertion of the Lemma. Similarly,
_9Gh(a) = / / Gual) dre(w)dry ()
This implies
~21(N) = <2 [Ga(@)R (@)da= [ [ [ gu(o)R(a)dadr(wyin (o).

With the abbreviations Ly, = 2(z, Qmu) and Ly, = 2(u, Qo) the inner-
most integral can be calculated as

/ (@) K () da
- / e(Qal@)) {m;Lan aajg (a) +mlzm§j;<a)} da
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Here we used the relations

STK(Q) = 2mi amK(a)
852*;{@ (@) = (27i)2amank ().
Since
S 82
ij=1 ¢
- O’°K "~ 0K
- mznil LinLn g 5 ~(Qu(2).-.Qr(x)) + mz_:l Lin g, ~(Qa(2).Qr(x))
we find
~ 5 o?
/T guu () K () dav = Z uiujm(K(Ql(x), e Qr(T)) .
i,j=1 v

Altogether we conclude

_2Hy(N / / Z iy —2— axz K(Q1(2)..Qn(2))) dre(u) drn ()

:;//UEN(K

= ([ aan) 3 [ 2 K@) @rlo) ).

Since 7 has compact support and fy is two times continuously differen-
tiable, partial integration yields

2 2
S (@)@, ) (o) dr = [K(Qu).. Q) T ) o

This completes the proof of the second assertion of the Lemma, since
[u?dn(u) =1/3.

Finally, we prove

O*fn
81‘%

() < N7572,

Note that

s 4
(o) —H(Sln ”;VNQ)”)) = Fol(2N + 1)),
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Hence, by Fourier inversion

0*fn

2
Ox;

(2) = (~2mi)? / T (t)2e(—(t, x)) dt

— _(2m)%(2N + 1) / Fo()2e(—(2N +1){t, z)) dt
< N—572,

This completes the proof of Lemma 7.1. We remark that we used the
fourfold convolution in the definition of wy, wx, f for the above treatment
of Hy(N) only. At all other places of the argument a twofold convolution
would be sufficient for our purpose. O

Lemma 7.2. Assume that the system Qi(x) = 0,...,Qr(x) = 0 has a
nonsingular real solution, then

M{z € R*||Qi(z)] < N2, [z]es < 1}) > N7,
where \ denotes the s-dimensional Lebesgue measure.

Proof. This is proved in Lemma 2 of [10]. Note that if a system of homoge-
neous equations Q1(z) =0,...,Q,(x) = 0 has a nonsingular real solution,
then it has a nonsingular real solution with |z|, < 1/2.

Now we complete the proof of Theorem 1.1 as follows. For ¢ > 0 and
N > 0 set

Ale,N) = \{z € R* | 1Qu(@)] < N2 [z < c}).

Then
A(e, N) = c®A(1,¢eN).
By Lemma 7.1
Ho(N) > N~* K(Q1(2),...,Qr(z))dx
‘xlooS2N
>>/ K(N?*Q1(y), ..., N*Qr(y)) dy
‘y|oo§2
> A(2,2N)

> A(1,5N)



236
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Wolfgang MULLER

Hy(N) < N‘S‘Q/ K(Q1(2),...,Qr(x)) dx

|| 0o <BN
< N2 K(N?Q1(y), ... N?Q.(y)) dy
|y|oo§5
< N72A(5,N)

< N72A(1,5N).

With Lemma 7.2 this yields

for

Ho(N) + Ho(N) > A(1,5N) > N~
N > Ny, say. Together with (6.3) this completes the proof of Theo-

rem 1.1. |

(1]
(2]
(3]
(4]

(5]
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