Reverse engineered Diophantine equations over
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 897-904.

Soit 𝒫 ={α n :α,n2} l’ensemble des puissances parfaites rationnelles, et soit S un sous-ensemble fini de 𝒫 . Nous prouvons l’existence d’un polynôme f S [X] tel que f()𝒫 =S. Ceci généralise un théorème récent de Gajović qui a démontré un résultat similaire pour les sous-ensembles finis de puissances parfaites entières. Notre approche fait appel à la résolution de l’équation de Fermat généralisée de signature (2,4,n) dans [2, 4, 7], ainsi qu’à la finitude des puissances parfaites dans les suites récurrentes binaires non dégénérées, prouvée par Pethő et par Shorey et Stewart.

Let 𝒫 ={α n :α,n2} be the set of rational perfect powers, and let S be a finite subset of 𝒫 . We prove the existence of a polynomial f S [X] such that f()𝒫 =S. This generalizes a recent theorem of Gajović who proved a similar result for finite subsets of integer perfect powers. Our approach makes use of the resolution of the generalized Fermat equation of signature (2,4,n) in [2, 4, 7], as well as the finiteness of perfect powers in non-degenerate binary recurrence sequences, proved by Pethő and by Shorey and Stewart.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1268
Classification : 11D41, 11D61
Mots clés : Diophantine equations, rational points
Katerina Santicola 1

1 Mathematics Institute University of Warwick CV4 7AL United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_3_897_0,
     author = {Katerina Santicola},
     title = {Reverse engineered {Diophantine} equations over $\mathbb{Q}$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {897--904},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {3},
     year = {2023},
     doi = {10.5802/jtnb.1268},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1268/}
}
TY  - JOUR
AU  - Katerina Santicola
TI  - Reverse engineered Diophantine equations over $\mathbb{Q}$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 897
EP  - 904
VL  - 35
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1268/
DO  - 10.5802/jtnb.1268
LA  - en
ID  - JTNB_2023__35_3_897_0
ER  - 
%0 Journal Article
%A Katerina Santicola
%T Reverse engineered Diophantine equations over $\mathbb{Q}$
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 897-904
%V 35
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1268/
%R 10.5802/jtnb.1268
%G en
%F JTNB_2023__35_3_897_0
Katerina Santicola. Reverse engineered Diophantine equations over $\mathbb{Q}$. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 897-904. doi : 10.5802/jtnb.1268. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1268/

[1] Michael A. Bennett; Imin Chen; Sander R. Dahmen; Soroosh Yazdani Generalized Fermat equations: a miscellany, Int. J. Number Theory, Volume 11 (2015) no. 1, pp. 1-28 | DOI | MR | Zbl

[2] Michael A. Bennett; Jordan S. Ellenberg; Nathan C. Ng The Diophantine equation A 4 +2 δ B 2 =C n , Int. J. Number Theory, Volume 6 (2010) no. 2, pp. 311-338 | Zbl

[3] Yuri Bilu; Guillaume Hanrot; Paul M. Voutier Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., Volume 539 (2001), pp. 75-122 (with an appendix by M. Mignotte) | MR | Zbl

[4] Nils Bruin The Diophantine equations x 2 ±y 4 =±z 6 and x 2 +y 8 =z 3 , Compos. Math., Volume 118 (1999) no. 3, pp. 305-321 | DOI | MR | Zbl

[5] Yann Bugeaud; Maurice Mignotte; Samir Siksek Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue–Nagell equation, Compos. Math., Volume 142 (2006) no. 1, pp. 31-62 | DOI | MR | Zbl

[6] John H. E. Cohn The Diophantine equation x 2 +C=y n . II, Acta Arith., Volume 109 (2003) no. 2, pp. 205-206 | DOI | MR | Zbl

[7] Jordan S. Ellenberg Galois representations attached to -curves and the generalized Fermat equation A 4 +B 2 =C p , Am. J. Math., Volume 126 (2004) no. 4, pp. 763-787 | DOI | MR | Zbl

[8] Stevan Gajović Reverse engineered Diophantine equations (2022) | arXiv

[9] Victor A. Lebesgue Sur l’impossibilité, en nombres entiers, de l’équation x m =y 2 +1, Nouv. Ann. de Math., Volume 9 (1850) no. 1

[10] Preda Mihăilescu Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., Volume 572 (2004), pp. 167-195 | MR | Zbl

[11] Attila Pethőe Perfect powers in second order linear recurrences, J. Number Theory, Volume 15 (1982), pp. 5-13 | DOI | MR | Zbl

[12] Andrzej Schinzel; Robert Tijdeman On the equation y m =P(x), Acta Arith., Volume 31 (1976), pp. 199-204 | Zbl

[13] Tarlok N. Shorey; Cameron L. Stewart On the Diophantine equation ax 2t +bx t y+cy 2 =d and pure powers in recurrence sequences, Math. Scand., Volume 52 (1983) no. 1, pp. 24-36 | DOI | MR | Zbl

[14] Tarlok N. Shorey; Robert Tijdeman Exponential Diophantine equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press, 1986 | DOI

Cité par Sources :