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Résumé. Soit PQ = {αn : α ∈ Q, n ≥ 2} l’ensemble des puissances parfaites
rationnelles, et soit S un sous-ensemble fini de PQ. Nous prouvons l’existence
d’un polynôme fS ∈ Z[X] tel que f(Q)∩PQ = S. Ceci généralise un théorème
récent de Gajović qui a démontré un résultat similaire pour les sous-ensembles
finis de puissances parfaites entières. Notre approche fait appel à la résolution
de l’équation de Fermat généralisée de signature (2, 4, n) dans [2, 4, 7], ainsi
qu’à la finitude des puissances parfaites dans les suites récurrentes binaires
non dégénérées, prouvée par Pethő et par Shorey et Stewart.

Abstract. Let PQ = {αn : α ∈ Q, n ≥ 2} be the set of rational perfect
powers, and let S be a finite subset of PQ. We prove the existence of a
polynomial fS ∈ Z[X] such that f(Q) ∩ PQ = S. This generalizes a recent
theorem of Gajović who proved a similar result for finite subsets of integer
perfect powers. Our approach makes use of the resolution of the generalized
Fermat equation of signature (2, 4, n) in [2, 4, 7], as well as the finiteness
of perfect powers in non-degenerate binary recurrence sequences, proved by
Pethő and by Shorey and Stewart.

1. Introduction
By a Schinzel–Tijdeman equation [14] we mean an equation of the form

(1.1) f(X) = Y n

where f is a polynomial with integer or rational coefficients, and the un-
knowns X, Y are taken to be either integral or rational. The exponent n is
also an unknown, usually taken to run through the integers n ≥ 2. A famous
theorem of Schinzel and Tijdeman [12] concerning such equations asserts
that if f ∈ Z[X] has at least two distinct roots, then there are finitely many
solutions (X, Y, n) to (1.1) with X, Y , n ∈ Z, n ≥ 3 and |Y | > 1. One of
the earliest examples of a Schinzel–Tijdeman equation is
(1.2) X2 + 1 = Y n, X, Y, n ∈ Z, n ≥ 2;
In 1850 Victor Lebesgue [9] proved that the only solutions are (X, Y ) =
(0, 1) if n is odd, and (X, Y ) = (0, ±1) if n is even. Lebesgue’s argument
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is elementary, and some version of this argument, with the help of the
Primitive Divisor Theorem of Bilu, Hanrot and Voutier [3] is capable of
resolving many equations of the form X2 + C = Y n (e.g. [6]). In contrast,
the equation X2 + 7 = Y n (which generalizes the famous Ramanujan–
Nagell equation) apparently cannot be tackled by elementary arguments,
and was solved by Bugeaud, Mignotte and Siksek [5] using a combination of
tools from Diophantine approximation and Galois representations of elliptic
curves. We can think of the Catalan equation

Xm − Y n = 1, X, Y, m, n ∈ Z, m, n ≥ 2
as an infinite family of Schinzel–Tijdeman equations of the form (1.1) by
rewriting it as Xm + 1 = Y n, giving such an equation for each value of m.
The famous Catalan conjecture, proved by Mihăilescu [10] in 2004, states
the only solution with XY ̸= 0 is 32 − 23 = 1.

We can view equation (1.1) as the question of which perfect powers
belong to f(Z) (if the unknowns X, Y belong to Z) or to f(Q) (if the
unknowns X, Y belong to Q). It is therefore natural to ask whether there
is a restriction on the set of perfect powers that can belong to f(Z) or
f(Q). Indeed, at the recent “Rational Points” conference (Schney, April
2022), Siksek posed the following two questions.

Question 1.1. Let
PZ = {an : a ∈ Z, n ≥ 2}

be the set of perfect powers in Z. Let S be a finite subset of PZ. Is there a
polynomial fS ∈ Z[X] such that fS(Z) ∩ PZ = S?

Question 1.2. Let
(1.3) PQ = {αn : α ∈ Q, n ≥ 2}
be the set of perfect powers in Q. Let S be a finite subset of PQ. Is there a
polynomial fS ∈ Q[X] such that fS(Q) ∩ PQ = S?

Question 1.1 was answered affirmatively by Gajović [8, Theorem 3.1], and
we briefly recall (and slightly simplify) his elegant argument which yields
an explicit polynomial fS in terms of S. Let S = {b1, b2, . . . , br} ⊆ PZ. Let

g(X) =
r∏

i=1
(X −bi)2 +1, h(X) = (X −1) ·g(X)+1, fS(X) = g(X) ·h(X).

It is clear that fS(bi) = bi, so S ⊆ fS(Z)∩PZ. To prove the reverse inclusion
let x ∈ Z such that fS(x) = yn for some y ∈ Z and n ≥ 2; it is enough
to prove that x = bi for some i. Write c =

∏r
i=1(x − bi). We consider two

cases:
• y = 0. Then h(x) = 0, so x − 1 = −1/(c2 + 1). Since x ∈ Z, we have

c = 0, and so x = bi for some i.
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• y ̸= 0. Note that g(x) > 0 and h(x) are coprime integers whose
product is yn. Thus g(x) = zn for some integer z, and so c2+1 = zn.
This implies c = 0, by the aforementioned theorem of Lebesgue
concerning (1.2). Hence x = bi for some i, completing the proof.

We point out that for the last step Gajović invokes Mihăilescu’s theorem [10]
(the Catalan conjecture), although it is enough to invoke the special (and
elementary) case due to Lebesgue.

The purpose of this paper is to give an affirmative answer to Question 1.2.
Concisely, our theorem can be stated as follows.

Theorem 1.3. Let S be a finite subset of PQ. Then there is a polynomial
fS ∈ Z[X] such that fS(Q) ∩ PQ = S.

We give a recipe for fS in terms of a certain effectively computable
(though currently inexplicit) constant. Instead of Lebesgue’s theorem, or
Mihăilescu’s theorem, our proof that fS(Q) ∩ PQ = S crucially relies on
the following theorem due to Ellenberg, to Bennett, Ellenberg and Ng, and
to Bruin.

Theorem 1.4 (Ellenberg et al.). Let n ≥ 4. Then the equation a2 +b4 = cn

has no solutions in coprime non-zero integers.

The theorem is due to Bruin [4] for n = 6, who treats this case using an
elliptic Chabauty argument. It is due to Ellenberg [7] for prime n ≥ 211,
and to Bennett, Ellenberg and Ng [2] for all other n ≥ 4. These two papers
make use of deep results in the theory of Galois representations of Q-curves
as well as a careful study of critical values of Hecke L-functions of modular
forms.

We shall also need a famous theorem on perfect powers in non-degenerate
binary recurrence sequences, due to Pethő [11] and independently to Shorey
and Stewart [13]. We shall not need the theorem in its full generality, so we
only state a special case.

Theorem 1.5 (Pethő, Shorey and Stewart). Let a, b, α, β be non-zero
integers with α ̸= ±β. Let

ut = aαt + bβt, t ∈ Z, t ≥ 0.

Then there is an effectively computable constant C(a, b, α, β) such that ut /∈
PZ for t > C(a, b, α, β).

The theorem is proved using Baker’s theory of lower bounds for linear
forms in logarithms of algebraic numbers.

2. Preliminary results
We shall need the following consequence of Theorem 1.5.



900 Katerina Santicola

Lemma 2.1. Let γ ∈ Q, γ ̸= 0. Then there is an effectively computable
constant D(γ) such for t > D(γ),

γ − 2t /∈ PQ.

Proof. Write γ = u/v where u, v ∈ Z, u ̸= 0, v ≥ 1 and gcd(u, v) = 1. We
let

D(γ) = max{log2 |γ|, C(u, −v, 1, 2)}

where C(a, b, α, β) is as in Theorem 1.5. Note that since C(a, b, α, β) is
effectively computable, so is D(γ). Let t > D(γ). We suppose γ − 2t ∈ PQ
and derive a contradiction.

Since t > log2 |γ|, we have γ − 2t ̸= 0. Observe that γ − 2t = (u − 2tv)/v
where the numerator u−2tv and the denominator v are coprime. As γ−2t ∈
PQ\{0} we conclude that u−2tv ∈ PZ. We apply Theorem 1.5 with a = u,
b = −v, α = 1, β = 2. Since t > C(u, −v, 1, 2), the theorem tells us that
u − 2tv /∈ PZ giving a contradiction. □

We also need the following two corollaries to Theorem 1.4.

Corollary 2.2. Let n ≥ 2. Then the only solutions to the equation A4 +
B4 = 2Cn with A, B, C ∈ Z and gcd(A, B) = 1 satisfy A = ±1, B = ±1.

Proof. Note that A, B are both odd. Write

U = AB, V = A4 − B4

2 .

Then U , V are coprime integers and satisfy

U4 + V 2 =
(

A4 + B4

2

)2

= C2n.

By Theorem 1.4 we have UV C = 0. However, U is odd so U ̸= 0. Thus
C ̸= 0. Hence V = 0, so A4 = B4. Since A, B are coprime, A = ±1, B = ±1
as required. □

Corollary 2.3. Let n ≥ 2. Then the only solutions to the equation A4 +
B4 = Cn with A, B, C ∈ Z and gcd(A, B) = 1 satisfy A = 0, B = ±1, or
B = 0, A = ±1.

Proof. For n = 2 this is a famous result of Fermat, proved by infinite
descent. For n = 3 it is in fact a result of Lucas [1, Section 5]. Suppose
n ≥ 4. Then we can rewrite the equation as (A2)2 + B4 = Cn and conclude
from Theorem 1.4. □
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3. Proof of Theorem 1.3
Let S be a finite subset of PQ. We would like to give a polynomial

fS ∈ Z[X] such that fS(Q)∩PQ = S. For S = ∅ we may take any constant
polynomial whose value is not a perfect power. Thus we may suppose S ̸= ∅.
We write

S = {β1, . . . , βr}
where r ≥ 1, and βi ∈ PQ. As the βi are rational numbers, we can write

βi = ai

ci
, ai, ci ∈ Z, ci ≥ 1, gcd(ai, ci) = 1.

Let p1, p2, . . . , pt be the distinct prime divisors of
∏n

i=1 ci, and let
(3.1) k = lcm(4, p1 − 1, p2 − 1, . . . , pt − 1).
Let

(3.2) F (X) =
r∏

i=1
(ciX − ai)2 − 1.

Since ci ≥ 1 we note that F has degree 2r, and hence at most 2r roots. We
are only interested in the non-zero rational roots of F , and we let these be
δ1, δ2, . . . , δm. We let s be an integer satisfying the following:

s = 2κ − 1 for some κ ≥ 1,(3.3)
s ≥ D(4δj), j = 1, . . . , m.(3.4)

Here D( · ) is as in Lemma 2.1. It is clear that such an s is effectively
computable. Let

g(X) =
r∏

i=1
(ciX − ai)k + 1, h(X) = (X − 2s)g(X) + 2s,(3.5)

fS(X) = g(X) · h(X) ∈ Z[X].(3.6)
To prove Theorem 1.3 we need to show that fS(Q) ∩ PQ = S. Observe
that g(βi) = 1, h(βi) = βi and so fS(βi) = βi. Thus βi ∈ fS(Q) ∩ PQ, and
therefore S ⊆ fS(Q) ∩ PQ. We would like to prove the reverse inclusion.
Thus let x ∈ Q and suppose that fS(x) ∈ PQ. To prove Theorem 1.3 it
will be enough to show that x = βi for some 1 ≤ i ≤ r.

Write
(3.7) x = u

v
, u, v ∈ Z, v ≥ 1, gcd(u, v) = 1.

Let

(3.8) A =
r∏

i=1
(ciu − aiv), B = A

gcd(A, vr) , w = vr

gcd(A, vr) ,

and note that
(3.9) gcd(B, w) = 1, w ≥ 1.
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Recall that we would like to show that x = βi (or equivalently u/v = ai/ci)
for some 1 ≤ i ≤ r. This is equivalent to A = 0, which is equivalent to
B = 0. Thus our proof will be complete on showing that B = 0.

We note that

(3.10)
g(x) = Ak + vkr

vkr
= Bk + wk

wk
,

h(x) = (u − 2sv) · (Bk + wk) + 2svwk

vwk
.

Lemma 3.1. gcd(Bk + wk, v) is a power of 2.

Proof. Let p be an odd prime dividing both Bk + wk and v. From (3.8) we
see that Bk + wk divides Ak + vkr. Thus p | (Ak + vkr) and so p | A. From
the product definition of A in (3.8), and since gcd(u, v) = 1 from (3.7), we
see that p | ci for some 1 ≤ i ≤ r. It follows from the definition of k in (3.1)
that (p − 1) | k. Since gcd(B, w) = 1 (3.9), we have that p ∤ w and p ∤ B, so
B, w ∈ Z∗

p. Then Fermat’s little theorem gives Bk + wk ≡ 2 mod p. This
contradicts p | (Bk + wk), and our claim follows. □

Lemma 3.2. Bk + wk ̸= 2.

Proof. Recall that k is an even integer by (3.1), and that w ≥ 1 from (3.9).
Suppose Bk + wk = 2. Then |B| = w = 1. In particular, from (3.10) we
have g(x) = 2. Thus

(3.11) fS(x) = g(x) · h(x) = 4x − 2s+1

from (3.5) and (3.6). First we show that x ̸= 0. Recall our assumption that
fS(x) ∈ PQ, and so fS(x) = yn for some rational y and some integer n ≥ 2.
If x = 0, then yn = −2s+1 = −22κ by (3.3). Thus n | 2κ and so n is even.
Hence yn > 0 giving a contradiction. We conclude that x ̸= 0.

Recall, from (3.7), that v ≥ 1 and x = u/v. From (3.8), as |B| = w = 1,
we see that

|A| = gcd(A, vr) = vr.

Thus A = ±vr. Dividing both sides of A = ±vr by vr gives
r∏

i=1
(cix − ai) = A

vr
= ±1,

from the product expression for A in (3.8). Thus x is a non-zero root of
the polynomial F (X) given in (3.2). We have previously labelled the roots
of F by δ1, δ2, . . . , δm. Thus x = δj for some 1 ≤ j ≤ m. By (3.4) we
have s + 1 > D(4δj). Hence, by Lemma 2.1 and (3.11) we have fS(x) =
4x − 2s+1 = 4δj − 2s+1 /∈ PQ, giving a contradiction. □

Lemma 3.3. If fS(x) = 0 then B = 0.
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Proof. Suppose fS(x) = 0 and recall that fS(x) = g(x)h(x). Note that
k is even by (3.1), and also w ≥ 1 by (3.9). Thus Bk + wk is a positive
integer and hence, from (3.10) we have g(x) ̸= 0. Hence h(x) = 0, whence
from (3.10),

(3.12) (u − 2sv) · (Bk + wk) = −2svwk.

We claim that Bk+wk is a power of 2. To prove this claim let p | (Bk+wk) be
an odd prime. As gcd(B, w) = 1 by (3.9), we have p ∤ w. From Lemma 3.1
we note that p ∤ v. However, from (3.12), we have p | 2svwk giving a
contradiction. Thus Bk + wk is indeed a power of 2. Since k is even and
gcd(B, w) = 1 we see that 4 ∤ (Bk + wk) and so Bk + wk = 1 or 2. However,
Bk + wk ̸= 2 from Lemma 3.2. We conclude that Bk + wk = 1. As w ≥ 1,
we obtain w = 1 and B = 0 as required. □

Recall that we have supposed that fS(x) ∈ PQ and to complete the proof
of Theorem 1.3, it is enough to show that B = 0. Lemma 3.3 establishes
this if fS(x) = 0. Thus we may suppose fS(x) ̸= 0. Hence fS(x) = yn

where y is a non-zero rational and n ≥ 2. We claim that Bk + wk = zn

or 2zn for some odd positive integer z. To prove this let p be an odd
prime dividing Bk + wk. Then, as before p ∤ w since gcd(B, w) = 1, and
p ∤ v from Lemma 3.1. From the expression for h(x) in (3.10) we see that
p divides neither the numerator nor the denominator of h(x), and hence
ordp(h(x)) = 0. However g(x)h(x) = fS(x) = yn, so

ordp(Bk + wk) = ordp(g(x)) = ordp(yn) ≡ 0 (mod n).

As this is true for every odd prime dividing Bk+wk we have Bk+wk = 2ezn

for some e ≥ 0 and some odd integer z. Now as before 4 ∤ (Bk + wk), since
k is even and gcd(B, w) = 1. Thus Bk + wk = zn or Bk + wk = 2zn where
z is odd.

Suppose first that Bk + wk = 2zn. Recall that 4 | k by (3.1). By Corol-
lary 2.2 we have B = ±1, w = 1, contradicting Lemma 3.2.

Thus Bk + wk = zn. We apply Corollary 2.3 to conclude that B = 0 or
w = 0. However, w ≥ 1, so B = 0 completing the proof.
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