-curves and the Lebesgue–Nagell equation
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 495-510.

Dans cet article, nous considérons l’équation

x 2 -q 2k+1 =y n ,qx,2y,

pour des entiers x,q,k,y et n, avec k0 et n3. Nous prolongeons le travail des premier et troisième auteurs en trouvant toutes les solutions dans les cas q=41 et q=97. Nous faisons ceci en construisant une -courbe de Frey–Hellegouarch définie sur le corps quadratique réel K=(q), et en combinant la méthode modulaire avec des techniques multi-Frey.

In this paper, we consider the equation

x 2 -q 2k+1 =y n ,qx,2y,

for integers x,q,k,y and n, with k0 and n3. We extend work of the first and third-named authors by finding all solutions in the cases q=41 and q=97. We do this by constructing a Frey–Hellegouarch -curve defined over the real quadratic field K=(q), and using the modular method with multi-Frey techniques.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1254
Classification : 11D41, 11D61, 11F80, 11G05
Mots clés : Lebesgue–Nagell, Elliptic curves, Frey curve, multi-Frey, $\mathbb{Q}$-curves, modularity, level-lowering, Galois representations, newforms.
Michael A. Bennett 1 ; Philippe Michaud-Jacobs 2 ; Samir Siksek 2

1 Department of Mathematics University of British Columbia Vancouver, B.C., V6T 1Z2, Canada
2 Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_2_495_0,
     author = {Michael A. Bennett and Philippe Michaud-Jacobs and Samir Siksek},
     title = {$\protect \mathbb{Q}$-curves and the {Lebesgue{\textendash}Nagell} equation},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {495--510},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {2},
     year = {2023},
     doi = {10.5802/jtnb.1254},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1254/}
}
TY  - JOUR
AU  - Michael A. Bennett
AU  - Philippe Michaud-Jacobs
AU  - Samir Siksek
TI  - $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 495
EP  - 510
VL  - 35
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1254/
DO  - 10.5802/jtnb.1254
LA  - en
ID  - JTNB_2023__35_2_495_0
ER  - 
%0 Journal Article
%A Michael A. Bennett
%A Philippe Michaud-Jacobs
%A Samir Siksek
%T $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 495-510
%V 35
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1254/
%R 10.5802/jtnb.1254
%G en
%F JTNB_2023__35_2_495_0
Michael A. Bennett; Philippe Michaud-Jacobs; Samir Siksek. $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 495-510. doi : 10.5802/jtnb.1254. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1254/

[1] Carlos Barros On the Lebesgue–Nagell equation and related subjects, Ph. D. Thesis, University of Warwick (2010)

[2] Michael A. Bennett; Imin Chen; Sander R. Dahmen; Soroosh Yazdani On the equation a 3 +b 3n =c 2 , Acta Arith., Volume 163 (2014) no. 4, pp. 327-343 | MR | Zbl

[3] Michael A. Bennett; Samir Siksek Differences between perfect powers: prime power gaps (2021) (https://arxiv.org/abs/2110.05553v1, to appear in Algebra Number Theory)

[4] Michael A. Bennett; Samir Siksek Differences between perfect powers: the Lebesgue–Nagell equation, Trans. Am. Math. Soc., Volume 3776 (2023) no. 1, pp. 335-370 | MR | Zbl

[5] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | MR | Zbl

[6] Yann Bugeaud On the Diophantine equation x 2 -p m =±y n , Acta Arith., Volume 80 (1997) no. 3, pp. 213-223 | Zbl

[7] Jordan S. Ellenberg Galois representations attached to -curves and the generalized Fermat equation A 4 +B 2 =C p , Am. J. Math., Volume 126 (2004) no. 4, pp. 763-787 | DOI | MR | Zbl

[8] Nuno Freitas; Samir Siksek The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compos. Math., Volume 151 (2015) no. 8, pp. 1395-1415 | DOI | MR | Zbl

[9] Nuno Freitas; Samir Siksek Fermat’s last theorem over some small real quadratic fields, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 875-895 | DOI | MR | Zbl

[10] Adela Gherga; Samir Siksek Efficient resolution of Thue–Mahler equations (2022) (https://arxiv.org/abs/2207.14492v1)

[11] Wilfrid Ivorra Sur les équations x p +2 β y p =z 2 et x p +2 β y p =2z 2 , Acta Arith., Volume 108 (2003) no. 4, pp. 326-338 | MR | Zbl

[12] Joey M. van Langen On the sum of fourth powers in arithmetic progressions, Int. J. Number Theory, Volume 17 (2021) no. 1, pp. 191-221 | DOI | MR | Zbl

[13] Philippe Michaud-Jacobs Fermat’s Last Theorem and modular curves over real quadratic fields, Acta Arith., Volume 203 (2022) no. 4, pp. 319-352 | DOI | MR | Zbl

[14] James S. Milne On the arithmetic of abelian varieties, Invent. Math., Volume 17 (1972), pp. 177-190 | DOI | MR | Zbl

[15] Jordi Quer -Curves and abelian varieties of GL 2 -type, Proc. Lond. Math. Soc., Volume 81 (2000) no. 2, pp. 285-317 | DOI | MR | Zbl

[16] Kenneth A. Ribet Abelian varieties over and modular forms, Algebra and Topology 1992 (Korea Advanced Institute of Science and Technology), Mathematics Research Center, 1992, pp. 53-79

Cité par Sources :