Controlling λ-invariants for the double and triple product p-adic L-functions
Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 733-778.

In the late 1990s, Vatsal showed that a congruence modulo p ν between two modular forms implied a congruence between their respective p-adic L-functions. We prove an analogous statement for both the double product and triple product p-adic L-functions, L p (fg) and L p (fgh): the former is cyclotomic in its nature, while the latter is over the weight-space. As a corollary, we derive transition formulae relating analytic λ-invariants of congruent Galois representations for V f V g , and for V f V g V h , respectively.

À la fin des années 1990, Vatsal a montré qu’une congruence modulo p ν entre deux formes modulaires implique une congruence entre leurs fonctions L p-adiques. Nous prouvons des énoncés analogues pour les fonctions L p-adiques L p (fg) et L p (fgh) associées aux produits double et triple de formes modulaires : la première est de nature cyclotomique, tandis que l’autre est définie sur l’espace des poids.

Comme corollaire, nous obtenons des formules de transition reliant les invariants λ analytiques des représentations de Galois congruentes pour V f V g et V f V g V h respectivement.

Published online:
DOI: 10.5802/jtnb.1177
Classification: 11F33, 11F67, 11G40, 11R23
Keywords: Iwasawa theory, $p$-adic $L$-functions, automorphic forms
Daniel Delbourgo 1; Hamish Gilmore 1

1 Department of Mathematics and Statistics University of Waikato Gate 8, Hillcrest Road Hamilton 3240, New Zealand
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Daniel Delbourgo and Hamish Gilmore},
     title = {Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {733--778},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {3.1},
     year = {2021},
     doi = {10.5802/jtnb.1177},
     language = {en},
     url = {}
AU  - Daniel Delbourgo
AU  - Hamish Gilmore
TI  - Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 733
EP  - 778
VL  - 33
IS  - 3.1
PB  - Société Arithmétique de Bordeaux
UR  -
DO  - 10.5802/jtnb.1177
LA  - en
ID  - JTNB_2021__33_3.1_733_0
ER  - 
%0 Journal Article
%A Daniel Delbourgo
%A Hamish Gilmore
%T Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 733-778
%V 33
%N 3.1
%I Société Arithmétique de Bordeaux
%R 10.5802/jtnb.1177
%G en
%F JTNB_2021__33_3.1_733_0
Daniel Delbourgo; Hamish Gilmore. Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 733-778. doi : 10.5802/jtnb.1177.

[1] Francesc Castella; Chan-Ho Kim; Matteo Longo Variation of anticyclotomic Iwasawa invariants in Hida families, Algebra Number Theory, Volume 11 (2017) no. 10, pp. 2339-2368 | DOI | MR | Zbl

[2] Suh Hyun Choi; Byoung Du Kim Congruences of two-variable p-adic L-functions of congruent modular forms of different weights, Ramanujan J., Volume 43 (2017) no. 1, pp. 163-195 | DOI | MR

[3] John Coates; Bernadette Perrin-Riou On p-adic L-functions attached to motives over , Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 23-54 | DOI | MR

[4] Henri Darmon; Victor Rotger Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR

[5] Daniel Delbourgo Variation of the analytic λ-invariant over a solvable extension, Proc. Lond. Math. Soc., Volume 120 (2020) no. 6, pp. 918-960 | DOI | MR | Zbl

[6] Daniel Delbourgo Variation of the algebraic λ-invariant over a solvable extension, Math. Proc. Camb. Philos. Soc., Volume 170 (2021) no. 3, pp. 499-521 | DOI | MR

[7] Daniel Delbourgo; Antonio Lei Congruences modulo p between ρ-twisted Hasse-Weil L-values, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8047-8080 | DOI | MR

[8] Daniel Delbourgo; Antonio Lei Heegner cycles and congruences between anticyclotomic p-adic L-functions over CM-extensions, New York J. Math., Volume 26 (2020), pp. 496-525 | MR

[9] Matthew Emerton; Robert Pollack; Tom Weston Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006), pp. 523-580 | DOI | MR | Zbl

[10] Kengo Fukunaga Triple product p-adic L-function attached to p-adic families of modular forms (2019) (

[11] Hamish Gilmore L-invariants and congruences for Galois representations of dimension 3, 4, and 8, Ph. D. Thesis, University of Waikato (New Zealand) (2020)

[12] Ralph Greenberg; Vinayak Vatsal On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl

[13] Benedict H. Gross; Don B. Zagier Heegner points and derivatives of L-series, Invent. Math., Volume 84 (1986), pp. 225-320 | DOI | MR

[14] Haruzo Hida On p-adic L-functions of GL(2)×GL(2) over totally real fields, Ann. Inst. Fourier, Volume 41 (1991) no. 2, pp. 311-391 | DOI | Numdam | MR

[15] Ming-Lun Hsieh Hida families and p-adic triple product L-functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR

[16] Ming-Lun Hsieh; Shunsuke Yamana Four variable p-adic triple product L-functions and the trivial zero conjecture (2019) (

[17] Tamotsu Ikeda On the location of poles of the triple L-functions, Compos. Math., Volume 83 (1992) no. 2, pp. 187-237 | Numdam | MR

[18] Guido Kings; David Loeffler; Sarah Livia Zerbes Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR

[19] Daniel Kriz; Chao Li Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma, Volume 7 (2019), e15, 80 pages | DOI | MR

[20] Barry Mazur; John Tate; Jeremy Teitelbaum On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986), pp. 1-48 | DOI | MR

[21] Alexey A. Panchishkin Non-archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer, 1991 | DOI | MR

[22] Sudhanshu Shekar; Ramdorai Sujatha Congruence formula for certain dihedral twists, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3579-3598 | DOI | MR

[23] Goro Shimura The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976), pp. 783-804 | DOI | MR

[24] Vinayak Vatsal Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999) no. 2, pp. 397-419 | MR | Zbl

[25] Vinayak Vatsal Integral periods for modular forms, Ann. Math. Qué., Volume 37 (2013) no. 1, pp. 109-128 | DOI | MR

Cited by Sources: