This article extends our study of the geometry of the -adic eigencurve at a point defined by a weight cuspform irregular at and having complex multiplication, and the implications in Iwasawa and in Hida theories. The novel results include the determination of the Fourier coefficients of certain non-classical -adic modular forms belonging to the generalized eigenspace of , in terms of -adic logarithms of algebraic numbers. We also compute the “mysterious” cross-ratios of the -ordinary filtrations of the Hida families containing .
Cet article prolonge notre étude de la géométrie de la courbe -adique de Hecke en un point défini par une forme modulaire cuspidale de poids à multiplication complexe et irrégulière en , et des implications en théories d’Iwasawa et de Hida. Les nouveaux résultats incluent la détermination des coefficients de Fourier de certaines formes modulaires -adiques non-classiques appartenant à l’espace propre généralisé de , en termes de logarithmes -adiques de nombres algébriques. Nous calculons aussi le « mystérieux » bi-rapport des filtrations -ordinaires des familles de Hida contenant .
Accepted:
Published online:
Keywords: Hida family, weight one modular form, eigencurve, $p$-adic $L$-function
Adel Betina 1; Mladen Dimitrov 2
@article{JTNB_2021__33_3.1_703_0, author = {Adel Betina and Mladen Dimitrov}, title = {A geometric view on {Iwasawa} theory}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {703--731}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1176}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/} }
TY - JOUR AU - Adel Betina AU - Mladen Dimitrov TI - A geometric view on Iwasawa theory JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 703 EP - 731 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/ DO - 10.5802/jtnb.1176 LA - en ID - JTNB_2021__33_3.1_703_0 ER -
%0 Journal Article %A Adel Betina %A Mladen Dimitrov %T A geometric view on Iwasawa theory %J Journal de théorie des nombres de Bordeaux %D 2021 %P 703-731 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/ %R 10.5802/jtnb.1176 %G en %F JTNB_2021__33_3.1_703_0
Adel Betina; Mladen Dimitrov. A geometric view on Iwasawa theory. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 703-731. doi : 10.5802/jtnb.1176. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/
[1] -adic -functions of critical CM forms (2011) (preprint)
[2] Critical -adic -functions, Invent. Math., Volume 189 (2012) no. 1, pp. 1-60 | DOI | MR | Zbl
[3] The eigenbook. Eigenvarieties, families of Galois representations, -adic -functions, Pathways in Mathematics, Birkhäuser, 2021, xi+316 pages | DOI
[4] Lissité de la courbe de Hecke de aux points Eisenstein critiques, J. Inst. Math. Jussieu, Volume 5 (2006) no. 2, pp. 333-349 | DOI
[5] Families of Galois representations and Selmer groups, Astérisque, Société Mathématique de France, 2009, xii+314 pages | Numdam
[6] On the eigencurve at classical weight 1 points, Duke Math. J., Volume 165 (2016) no. 2, pp. 245-266 | MR | Zbl
[7] Ordinary modular forms and companion points on the eigencurve, J. Number Theory, Volume 134 (2014), pp. 226-239 | DOI | MR
[8] Ramification of the eigencurve at classical RM points, Can. J. Math., Volume 72 (2020) no. 1, pp. 57-88 | DOI | MR
[9] Geometry of the eigencurve at CM points and trivial zeros of Katz -adic -functions, Adv. Math., Volume 384 (2021), 107724, 43 pages | MR
[10] On the failure of gorensteinness at weight 1 Eisenstein points of the eigencurve, Am. J. Math., Volume 144 (2022) no. 1 (34 pages)
[11] Eisenstein points on the Hilbert cuspidal eigenvariety (2020) (preprint)
[12] Arithmetic of -irregular modular forms: families and -adic -functions, Mathematika, Volume 67 (2021) no. 4, pp. 917-948 | DOI | MR
[13] Représentations -adiques ordinaires de et compatibilité local-global, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 255-315 | Numdam | Zbl
[14] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | DOI | MR
[15] On the ramification of Hecke algebras at Eisenstein primes, Invent. Math., Volume 160 (2005) no. 1, pp. 97-144 | DOI | MR
[16] Class groups and local indecomposability for non-CM forms, J. Eur. Math. Soc. (2021) (published online first) | DOI
[17] Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | MR
[18] Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996) no. 1-3, pp. 215-241 | DOI | MR
[19] On the semi-simplicity of the -operator on modular forms, Math. Ann., Volume 310 (1998) no. 1, pp. 119-127 | DOI | MR
[20] The eigencurve, Galois representations in arithmetic algebraic geometry (London Mathematical Society Lecture Note Series), Volume 254, Cambridge University Press, 1996, pp. 1-113
[21] Overconvergent generalised eigenforms of weight one and class fields of real quadratic fields, Adv. Math., Volume 283 (2015), pp. 130-142 | DOI | MR
[22] First order -adic deformations of weight one newforms, -functions and automorphic forms (Contributions in Mathematical and Computational Sciences), Volume 10, Springer, 2017, pp. 39-80 | DOI | MR
[23] Hilbert modular forms and the Gross–Stark conjecture, Ann. Math., Volume 174 (2011) no. 1, pp. 439-484 | DOI | MR
[24] On the Gross–Stark conjecture, Ann. Math., Volume 188 (2018) no. 3, pp. 833-870 | MR
[25] Formes modulaires de poids , Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | DOI | Numdam | MR
[26] The eigencurve is proper, Duke Math. J., Volume 165 (2016) no. 7, pp. 1381-1395 | MR | Zbl
[27] On the local structure of ordinary Hecke algebras at classical weight one points, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 1-16 | MR
[28] On classical weight one forms in Hida families, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 3, pp. 669-690 | DOI | Numdam | MR | Zbl
[29] On the behavior of -adic -functions at , Invent. Math., Volume 50 (1978), pp. 91-102 | DOI | MR
[30] On the local behavior of ordinary modular Galois representations, Modular curves and Abelian varieties (Progress in Mathematics), Volume 224, Birkhäuser, 2004, pp. 105-124 | DOI | MR | Zbl
[31] Control theorems for ordinary -adic families of modular forms, Automorphic representations and -functions (Tata Institute of Fundamental Research Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 231-261 | MR | Zbl
[32] On the local behaviour of ordinary -adic representations, Ann. Inst. Fourier, Volume 54 (2004) no. 7, pp. 2143-2162 | DOI | MR | Zbl
[33] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | MR
[34] Universal eigenvarieties, trianguline Galois representations, and -adic Langlands functoriality, J. Reine Angew. Math., Volume 730 (2017), pp. 1-64 (With an appendix by James Newton) | DOI | MR
[35] Congruence of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981), pp. 225-261 | DOI | MR
[36] On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math., Volume 64 (1981), pp. 221-262 | DOI | MR
[37] Kummer’s criterion for the special values of Hecke -functions of imaginary quadratic fields and congruences among cusp forms, Invent. Math., Volume 66 (1982), pp. 415-459 | DOI | MR
[38] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613 | DOI | MR
[39] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986), pp. 231-273 | DOI | Numdam | MR
[40] Fourier coefficients of the overconvergent generalized eigenform associated to a CM form, Int. J. Number Theory, Volume 16 (2020) no. 6, pp. 1185-1197 | MR
[41] Irregular weight one points with image, Can. Math. Bull., Volume 62 (2019) no. 1, pp. 109-118 | DOI | MR | Zbl
[42] Geometry of the eigencurve at critical Eisenstein series of weight 2, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 1, pp. 183-197 | DOI | Numdam | MR
[43] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986), pp. 1-48 | DOI | MR
[44] Overconvergent modular forms, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | Numdam | MR
[45] Formes modulaires et fonctions zêta -adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1972, pp. 191-268 | DOI
[46] Pseudo-modularity and Iwasawa theory, Am. J. Math., Volume 140 (2018) no. 4, pp. 977-1040 | DOI | MR
[47] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR
Cited by Sources: