This article extends our study of the geometry of the
Cet article prolonge notre étude de la géométrie de la courbe
Accepté le :
Publié le :
Mots-clés : Hida family, weight one modular form, eigencurve,
Adel Betina 1 ; Mladen Dimitrov 2

@article{JTNB_2021__33_3.1_703_0, author = {Adel Betina and Mladen Dimitrov}, title = {A geometric view on {Iwasawa} theory}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {703--731}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1176}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/} }
TY - JOUR AU - Adel Betina AU - Mladen Dimitrov TI - A geometric view on Iwasawa theory JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 703 EP - 731 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/ DO - 10.5802/jtnb.1176 LA - en ID - JTNB_2021__33_3.1_703_0 ER -
%0 Journal Article %A Adel Betina %A Mladen Dimitrov %T A geometric view on Iwasawa theory %J Journal de théorie des nombres de Bordeaux %D 2021 %P 703-731 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/ %R 10.5802/jtnb.1176 %G en %F JTNB_2021__33_3.1_703_0
Adel Betina; Mladen Dimitrov. A geometric view on Iwasawa theory. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 703-731. doi : 10.5802/jtnb.1176. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1176/
[1]
[2] Critical
[3] The eigenbook. Eigenvarieties, families of Galois representations,
[4] Lissité de la courbe de Hecke de
[5] Families of Galois representations and Selmer groups, Astérisque, Société Mathématique de France, 2009, xii+314 pages | Numdam
[6] On the eigencurve at classical weight 1 points, Duke Math. J., Volume 165 (2016) no. 2, pp. 245-266 | MR | Zbl
[7] Ordinary modular forms and companion points on the eigencurve, J. Number Theory, Volume 134 (2014), pp. 226-239 | DOI | MR
[8] Ramification of the eigencurve at classical RM points, Can. J. Math., Volume 72 (2020) no. 1, pp. 57-88 | DOI | MR
[9] Geometry of the eigencurve at CM points and trivial zeros of Katz
[10] On the failure of gorensteinness at weight 1 Eisenstein points of the eigencurve, Am. J. Math., Volume 144 (2022) no. 1 (34 pages)
[11] Eisenstein points on the Hilbert cuspidal eigenvariety (2020) (preprint)
[12] Arithmetic of
[13] Représentations
[14] Eigenvarieties,
[15] On the ramification of Hecke algebras at Eisenstein primes, Invent. Math., Volume 160 (2005) no. 1, pp. 97-144 | DOI | MR
[16] Class groups and local indecomposability for non-CM forms, J. Eur. Math. Soc. (2021) (published online first) | DOI
[17] Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | MR
[18] Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996) no. 1-3, pp. 215-241 | DOI | MR
[19] On the semi-simplicity of the
[20] The eigencurve, Galois representations in arithmetic algebraic geometry (London Mathematical Society Lecture Note Series), Volume 254, Cambridge University Press, 1996, pp. 1-113
[21] Overconvergent generalised eigenforms of weight one and class fields of real quadratic fields, Adv. Math., Volume 283 (2015), pp. 130-142 | DOI | MR
[22] First order
[23] Hilbert modular forms and the Gross–Stark conjecture, Ann. Math., Volume 174 (2011) no. 1, pp. 439-484 | DOI | MR
[24] On the Gross–Stark conjecture, Ann. Math., Volume 188 (2018) no. 3, pp. 833-870 | MR
[25] Formes modulaires de poids
[26] The eigencurve is proper, Duke Math. J., Volume 165 (2016) no. 7, pp. 1381-1395 | MR | Zbl
[27] On the local structure of ordinary Hecke algebras at classical weight one points, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 1-16 | MR
[28] On classical weight one forms in Hida families, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 3, pp. 669-690 | DOI | Numdam | MR | Zbl
[29] On the behavior of
[30] On the local behavior of ordinary modular Galois representations, Modular curves and Abelian varieties (Progress in Mathematics), Volume 224, Birkhäuser, 2004, pp. 105-124 | DOI | MR | Zbl
[31] Control theorems for ordinary
[32] On the local behaviour of ordinary
[33]
[34] Universal eigenvarieties, trianguline Galois representations, and
[35] Congruence of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981), pp. 225-261 | DOI | MR
[36] On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math., Volume 64 (1981), pp. 221-262 | DOI | MR
[37] Kummer’s criterion for the special values of Hecke
[38] Galois representations into
[39] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986), pp. 231-273 | DOI | Numdam | MR
[40] Fourier coefficients of the overconvergent generalized eigenform associated to a CM form, Int. J. Number Theory, Volume 16 (2020) no. 6, pp. 1185-1197 | MR
[41] Irregular weight one points with
[42] Geometry of the eigencurve at critical Eisenstein series of weight 2, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 1, pp. 183-197 | DOI | Numdam | MR
[43] On
[44] Overconvergent modular forms, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | Numdam | MR
[45] Formes modulaires et fonctions zêta
[46] Pseudo-modularity and Iwasawa theory, Am. J. Math., Volume 140 (2018) no. 4, pp. 977-1040 | DOI | MR
[47] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR
Cité par Sources :