Normal largest gap between prime factors
Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 747-749.

Désignons par {p j (n)} j=1 ω(n) la suite croissante des facteurs premiers distincts d’un entier n. Nous explicitions les détails de la preuve d’un énoncé d’Erdős impliquant que, pour toute fonction ξ(n) tendant vers l’infini avec n, nous avons

f(n):=max1j<ω(n)loglogpj+1(n)logpj(n)=log3n+O(ξ(n))

pour presque tout entier n.

Let {p j (n)} j=1 ω(n) denote the increasing sequence of distinct prime factors of an integer n. We provide details for the proof of a statement of Erdős implying that, for any function ξ(n) tending to infinity with n, we have

f(n):=max1j<ω(n)loglogpj+1(n)logpj(n)=log3n+O(ξ(n))

for almost all integers n.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1107
Classification : 11N56, 14G42
Mots clés : Distribution of prime factors, normal order, largest gap.
Gérald Tenenbaum 1

1 Institut Élie Cartan Université de Lorraine BP 70239 54506 Vandœuvre-lès-Nancy Cedex, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2019__31_3_747_0,
     author = {G\'erald Tenenbaum},
     title = {Normal largest gap between prime factors},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {747--749},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {3},
     year = {2019},
     doi = {10.5802/jtnb.1107},
     mrnumber = {4102627},
     zbl = {1462.11078},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/}
}
TY  - JOUR
AU  - Gérald Tenenbaum
TI  - Normal largest gap between prime factors
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 747
EP  - 749
VL  - 31
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/
DO  - 10.5802/jtnb.1107
LA  - en
ID  - JTNB_2019__31_3_747_0
ER  - 
%0 Journal Article
%A Gérald Tenenbaum
%T Normal largest gap between prime factors
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 747-749
%V 31
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/
%R 10.5802/jtnb.1107
%G en
%F JTNB_2019__31_3_747_0
Gérald Tenenbaum. Normal largest gap between prime factors. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 747-749. doi : 10.5802/jtnb.1107. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/

[1] Pál Erdős Some remarks on prime factors of integers, Can. J. Math., Volume 11 (1959), pp. 161-167 | DOI | MR | Zbl

[2] Pál Erdős On some properties of prime factors of integers, Nagoya Math. J., Volume 27 (1966), pp. 617-623 | DOI | MR | Zbl

[3] Pál Erdős On the distribution of prime divisors, Aequationes Math., Volume 2 (1969), pp. 177-183 | DOI | MR | Zbl

[4] Efthymios Sofos (private e-mail message, August 30, 2018)

[5] Gérald Tenenbaum Cribler les entiers sans grand facteur premier, Philos. Trans. R. Soc. Lond., Ser. A, Volume 345 (1993), pp. 377-384 | MR | Zbl

[6] Gérald Tenenbaum Introduction to analytic and probabilistic number theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015 | MR | Zbl

Cité par Sources :