Computing -invariants via the Greenberg–Stevens formula
Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 727-746.

In this article, we describe how to compute slopes of p-adic -invariants of Hecke eigenforms of arbitrary weight and level by means of the Greenberg–Stevens formula. Our method is based on the work of Lauder and Vonk on computing the reverse characteristic series of the U p -operator on overconvergent modular forms. Using higher derivatives of this series, we construct a polynomial whose roots are precisely the -invariants appearing in the corresponding space of modular forms with fixed sign of the Atkin–Lehner involution at p. In addition, we describe how to compute this polynomial efficiently. In the final section, we give computational evidence for relations between slopes of -invariants of different levels and weights for small primes p.

Dans cet article, nous montrons comment calculer les pentes des invariants- p-adiques de formes modulaires de niveaux et de poids arbitraires en appliquant la formule de Greenberg–Stevens. Notre méthode repose sur les travaux de Lauder et Vonk sur le calcul de la série caractéristique réciproque de l’opérateur U p sur les formes modulaires surconvergentes. En utilisant les dérivées supérieures de cette série, nous construisons un polynôme dont les racines sont exactement les invariants- apparaissant dans l’espace correspondant des formes modulaires de signe fixé pour l’action de l’involution d’Atkin–Lehner en p. En outre, nous montrons comment calculer ce polynôme efficacement. Dans la dernière section, pour des petits nombres premiers p, nous donnons des évidences numériques en faveur de l’existence des relations entre les pentes des invariants- de différents niveaux et poids.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1106
Classification: 11F03,  11F85
Keywords: classical and p-adic modular forms
Samuele Anni 1; Gebhard Böckle 2; Peter Gräf 2; Álvaro Troya 2

1 Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille Case 907, 163, avenue de Luminy, F13288 Marseille cedex 9, France
2 Universität Heidelberg, Interdisziplinäres Zentrum für wissenschaftliches Rechnen Im Neuenheimer Feld 205 69120 Heidelberg, Germany
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2019__31_3_727_0,
     author = {Samuele Anni and Gebhard B\"ockle and Peter Gr\"af and \'Alvaro Troya},
     title = {Computing $\protect \mathcal{L}$-invariants via the {Greenberg{\textendash}Stevens} formula},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {727--746},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {3},
     year = {2019},
     doi = {10.5802/jtnb.1106},
     mrnumber = {4102626},
     zbl = {1445.11025},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1106/}
}
TY  - JOUR
AU  - Samuele Anni
AU  - Gebhard Böckle
AU  - Peter Gräf
AU  - Álvaro Troya
TI  - Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
DA  - 2019///
SP  - 727
EP  - 746
VL  - 31
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1106/
UR  - https://www.ams.org/mathscinet-getitem?mr=4102626
UR  - https://zbmath.org/?q=an%3A1445.11025
UR  - https://doi.org/10.5802/jtnb.1106
DO  - 10.5802/jtnb.1106
LA  - en
ID  - JTNB_2019__31_3_727_0
ER  - 
%0 Journal Article
%A Samuele Anni
%A Gebhard Böckle
%A Peter Gräf
%A Álvaro Troya
%T Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 727-746
%V 31
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1106
%R 10.5802/jtnb.1106
%G en
%F JTNB_2019__31_3_727_0
Samuele Anni; Gebhard Böckle; Peter Gräf; Álvaro Troya. Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 727-746. doi : 10.5802/jtnb.1106. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1106/

[1] A. Oliver L. Atkin; Joseph Lehner Hecke operators on Γ 0 (m), Math. Ann., Volume 185 (1970), pp. 134-160 | DOI | Zbl

[2] Katia Barré-Sirieix; Guy Diaz; François Gramain; Georges Philibert Une preuve de la conjecture de Mahler–Manin, Invent. Math., Volume 124 (1996) no. 1-3, pp. 1-9 | DOI | MR | Zbl

[3] Joël Bellaïche Eigenvarieties, families of Galois representations, p-adic L-functions (2010) (unpublished course notes) | Zbl

[4] Joël Bellaïche Critical p-adic L-functions, Invent. Math., Volume 189 (2012), pp. 1-60 | DOI | MR | Zbl

[5] John Bergdall Upper bounds for constant slope p-adic families of modular forms, Sel. Math., New Ser., Volume 25 (2019) no. 4, 59, 24 pages | MR | Zbl

[6] Kevin Buzzard Questions about slopes of modular forms, Automorphic forms (I) (Astérisque), Volume 298, Société Mathématique de France, 2005, pp. 1-15 | Numdam | Zbl

[7] Kevin Buzzard Eigenvarieties, L-functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | DOI | MR | Zbl

[8] Gaëtan Chenevier Quelques courbes de Hecke se plongent dans l’espace de Colmez, J. Number Theory, Volume 128 (2008) no. 8, pp. 2430-2449 | DOI | MR | Zbl

[9] Robert F. Coleman Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996) no. 1-3, pp. 215-241 | DOI | MR | Zbl

[10] Robert F. Coleman p-adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl

[11] Robert F. Coleman; Glenn Stevens; Jeremy T. Teitelbaum Numerical experiments on families of p-adic modular forms, Computational perspectives on number theory (Chicago, IL, 1995) (AMS/IP Studies in Advanced Mathematics), Volume 7, American Mathematical Society, 1995, pp. 143-158 | DOI | Zbl

[12] Pierre Colmez Invariants et dérivées de valeurs propres de Frobenius, Représentations p-adiques de groupes p-adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 13-28 | Numdam | Zbl

[13] Fernando Quadros Gouvêa; Barry Mazur On the characteristic power series of the U operator, Ann. Inst. Fourier, Volume 43 (1993) no. 2, pp. 301-312 | DOI | Numdam | MR | Zbl

[14] Peter M. Gräf A control theorem for p-adic automorphic forms and Teitelbaum’s -invariant, Ramanujan J., Volume 50 (2019) no. 1, pp. 13-43 | DOI | MR | Zbl

[15] Ralph Greenberg; Glenn Stevens p-adic L-functions and p-adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | MR | Zbl

[16] Xavier Guitart; Marc Masdeu Periods of modular GL 2 -type abelian varieties and p-adic integration, Exp. Math., Volume 27 (2018) no. 3, pp. 344-361 | DOI | Zbl

[17] Alan G. B. Lauder Computations with classical and p-adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 | DOI | MR | Zbl

[18] Kimball Martin Refined dimensions of cusp forms, and equidistribution and bias of signs, J. Number Theory, Volume 188 (2018), pp. 1-17 | DOI | MR | Zbl

[19] Barry Mazur; John T. Tate; Jeremy T. Teitelbaum On p-adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986), pp. 1-48 | DOI | MR | Zbl

[20] Jeremy T. Teitelbaum Values of p-adic L-functions and a p-adic Poisson kernel, Invent. Math., Volume 101 (1990) no. 2, pp. 395-410 | DOI | MR | Zbl

[21] Jan Vonk Computing overconvergent forms for small primes, LMS J. Comput. Math., Volume 18 (2015), pp. 250-257 | DOI | MR | Zbl

Cited by Sources: