Désignons par la suite croissante des facteurs premiers distincts d’un entier . Nous explicitions les détails de la preuve d’un énoncé d’Erdős impliquant que, pour toute fonction tendant vers l’infini avec , nous avons
pour presque tout entier .
Let denote the increasing sequence of distinct prime factors of an integer . We provide details for the proof of a statement of Erdős implying that, for any function tending to infinity with , we have
for almost all integers .
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1107
Mots clés : Distribution of prime factors, normal order, largest gap.
@article{JTNB_2019__31_3_747_0, author = {G\'erald Tenenbaum}, title = {Normal largest gap between prime factors}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {747--749}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1107}, mrnumber = {4102627}, zbl = {1462.11078}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/} }
TY - JOUR AU - Gérald Tenenbaum TI - Normal largest gap between prime factors JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 747 EP - 749 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/ DO - 10.5802/jtnb.1107 LA - en ID - JTNB_2019__31_3_747_0 ER -
%0 Journal Article %A Gérald Tenenbaum %T Normal largest gap between prime factors %J Journal de théorie des nombres de Bordeaux %D 2019 %P 747-749 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/ %R 10.5802/jtnb.1107 %G en %F JTNB_2019__31_3_747_0
Gérald Tenenbaum. Normal largest gap between prime factors. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 747-749. doi : 10.5802/jtnb.1107. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1107/
[1] Some remarks on prime factors of integers, Can. J. Math., Volume 11 (1959), pp. 161-167 | DOI | MR | Zbl
[2] On some properties of prime factors of integers, Nagoya Math. J., Volume 27 (1966), pp. 617-623 | DOI | MR | Zbl
[3] On the distribution of prime divisors, Aequationes Math., Volume 2 (1969), pp. 177-183 | DOI | MR | Zbl
[4]
(private e-mail message, August 30, 2018)[5] Cribler les entiers sans grand facteur premier, Philos. Trans. R. Soc. Lond., Ser. A, Volume 345 (1993), pp. 377-384 | MR | Zbl
[6] Introduction to analytic and probabilistic number theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015 | MR | Zbl
Cité par Sources :