Let be prime. For elliptic modular forms of weight 2 and level where is squarefree, we bound the depth of Eisenstein congruences modulo (from below) by a generalized Bernoulli number with correction factors and show how this depth detects the local non-principality of the Eisenstein ideal. We then use admissibility results of Ribet and Yoo to give an infinite class of examples where the Eisenstein ideal is not locally principal. Lastly, we illustrate these results with explicit computations and give an interesting commutative algebra application related to Hilbert–Samuel multiplicities.
Soit un nombre premier. Pour les formes modulaires elliptiques de poids et de niveau où est sans facteurs carrés, nous donnons une minoration de la profondeur des congruences d’Eisenstein modulo en fonction d’un nombre de Bernoulli généralisé et de certains facteurs de correction, et montrons que cette profondeur détecte la non principalité locale de l’idéal d’Eisenstein. Nous utilisons ensuite les résultats d’admissibilité de Ribet et Yoo pour donner une infinité d’exemples où l’idéal d’Eisenstein n’est pas localement principal. Finalement, nous illustrons ces résultats par des calculs explicites et en donnons une application intéressante aux multiplicités de Hilbert–Samuel.
Accepted:
Published online:
Keywords: Congruences between modular forms, Eisentein ideal
Catherine M. Hsu 1

@article{JTNB_2019__31_2_503_0, author = {Catherine M. Hsu}, title = {Higher congruences between newforms and {Eisenstein} series of squarefree level}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {503--525}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1092}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/} }
TY - JOUR AU - Catherine M. Hsu TI - Higher congruences between newforms and Eisenstein series of squarefree level JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 503 EP - 525 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/ DO - 10.5802/jtnb.1092 LA - en ID - JTNB_2019__31_2_503_0 ER -
%0 Journal Article %A Catherine M. Hsu %T Higher congruences between newforms and Eisenstein series of squarefree level %J Journal de théorie des nombres de Bordeaux %D 2019 %P 503-525 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/ %R 10.5802/jtnb.1092 %G en %F JTNB_2019__31_2_503_0
Catherine M. Hsu. Higher congruences between newforms and Eisenstein series of squarefree level. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 503-525. doi : 10.5802/jtnb.1092. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/
[1] Modularity of residual Galois extensions and the Eisenstein ideal (to appear in Trans. Am. Math. Soc.) | DOI | Zbl
[2] On deformation rings of residually reducible Galois representations and theorems, Math. Ann., Volume 355 (2013) no. 2, pp. 481-518 | DOI | MR | Zbl
[3] On higher congruences between automorphic forms, Math. Res. Lett., Volume 21 (2014) no. 1, pp. 71-82 | DOI | MR | Zbl
[4] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[5] On the ramification of Hecke algebras at Eisenstein primes, Invent. Math., Volume 160 (2005) no. 1, pp. 97-144 | DOI | MR | Zbl
[6] On congruences between eigenforms and their attached Galois representations, J. Number Theory, Volume 130 (2010), pp. 608-619 | DOI | MR | Zbl
[7] Fermat’s last theorem, Current developments in mathematics (1995), International Press., 1995, pp. 1-107 | Zbl
[8] Modular forms and modular curves, Seminar on Fermat’s last theorem (Toronto, 1993–1994) (CMS Conference Proceedings), Volume 17, American Mathematical Society, 1993, pp. 1993-1994 | Zbl
[9] Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[10] The Jacquet–Langlands correspondence, Eisenstein congruences, and integral -values in weight 2, Math. Res. Lett., Volume 24 (2017) no. 6, pp. 1775-1795 | DOI | MR | Zbl
[11] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Zbl
[12] Class fields of abelian extensions of , Invent. Math., Volume 76 (1984), pp. 179-330 | DOI | MR | Zbl
[13] Modular forms, Springer Monographs in Mathematics, Springer, 2006 | MR | Zbl
[14] On higher congruences between cusp forms and Eisenstein series, Computations with modular forms (Heidelberg, 2011) (Contributions in Mathematical and Computational Sciences), Volume 6, Springer, 2014, pp. 257-277 | DOI | MR | Zbl
[15] Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | DOI | MR | Zbl
[16] Ordinary representations and modular forms, Proc. Natl. Acad. Sci. USA, Volume 94 (1997) no. 20, pp. 10520-10527 | DOI | MR | Zbl
[17] The rank of Mazur’s Eisenstein ideal (2017) (to appear in Duke Math. J.)
[18] The Eisenstein ideal with squarefree level (2018) (https://arxiv.org/abs/1804.06400)
[19] The index of an Eisenstein ideal and multiplicity one, Math. Z., Volume 282 (2016) no. 3-4, pp. 1097-1116 | MR | Zbl
[20] Non-optimal levels of a reducible modular representation, Trans. Am. Math. Soc., Volume 371 (2019) no. 6, pp. 3805-3830 | MR | Zbl
Cited by Sources: