We discuss improvements of Kolyvagin’s classical result about the vanishing of the -primary part of the Tate–Šafarevič group of an elliptic curve (defined over ) over an imaginary quadratic field satisfying the Heegner hypothesis for which the basic Heegner point is not divisible by an odd prime . Combining Kolyvagin’s theorem with a new abstract Iwasawa-theoretical result, we deduce, under suitable assumptions, that similar vanishing holds for all layers in the anticyclotomic -extension of .
Accepted:
Published online:
Keywords: Heegner points, elliptic curves, Iwasawa theory
Ahmed Matar 1; Jan Nekovář 2

@article{JTNB_2019__31_2_455_0, author = {Ahmed Matar and Jan Nekov\'a\v{r}}, title = {Kolyvagin{\textquoteright}s result on the vanishing of $\protect \Sha(E/K)[p^\infty ]$ and its consequences for anticyclotomic {Iwasawa} theory}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {455--501}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1091}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1091/} }
TY - JOUR AU - Ahmed Matar AU - Jan Nekovář TI - Kolyvagin’s result on the vanishing of $\protect \Sha(E/K)[p^\infty ]$ and its consequences for anticyclotomic Iwasawa theory JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 455 EP - 501 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1091/ DO - 10.5802/jtnb.1091 LA - en ID - JTNB_2019__31_2_455_0 ER -
%0 Journal Article %A Ahmed Matar %A Jan Nekovář %T Kolyvagin’s result on the vanishing of $\protect \Sha(E/K)[p^\infty ]$ and its consequences for anticyclotomic Iwasawa theory %J Journal de théorie des nombres de Bordeaux %D 2019 %P 455-501 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1091/ %R 10.5802/jtnb.1091 %G en %F JTNB_2019__31_2_455_0
Ahmed Matar; Jan Nekovář. Kolyvagin’s result on the vanishing of $\protect \Sha(E/K)[p^\infty ]$ and its consequences for anticyclotomic Iwasawa theory. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 455-501. doi : 10.5802/jtnb.1091. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1091/
[1] Selmer groups and Heegner points in anticyclotomic -extensions, Compos. Math., Volume 99 (1995) no. 2, pp. 153-182 | Zbl
[2] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift. I. (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl
[3] Vanishing of some cohomology groups and bounds for the Shafarevich–Tate groups of elliptic curves, J. Number Theory, Volume 111 (2005) no. 1, pp. 154-178 | MR | Zbl
[4] Weil-Châtelet divisible elements in Tate-Shafarevich groups I: The Bashmakov problem for elliptic curves over , Compos. Math., Volume 149 (2013) no. 5, pp. 729-753 | DOI | Zbl
[5] Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math., Volume 700 (2015), pp. 175-207 | Zbl
[6] Reduction de Familles de points CM, Ph. D. Thesis, Université de Strasbourg 1 (France) (2000)
[7] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[8] Linear groups: With an exposition of the Galois field theory, Dover Publications, 1958 | Zbl
[9] Noncommutative Algebra, Graduate Texts in Mathematics, 144, Springer, 1993 | MR | Zbl
[10] Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions , Motives (Seattle, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1991, pp. 599-706 | Zbl
[11] Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comput., Volume 78 (2009) no. 268, pp. 2397-2425 | DOI | MR | Zbl
[12] Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 153, Cambridge University Press, 1989, pp. 235-256 | Zbl
[13] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986), pp. 225-320 | DOI | MR | Zbl
[14] Small representations are completely reducible, J. Algebra, Volume 220 (1999) no. 2, pp. 531-541 | DOI | MR | Zbl
[15] The Heegner point Kolyvagin system, Compos. Math., Volume 140 (2004) no. 6, pp. 1439-1472 | DOI | MR | Zbl
[16] Global divisibility of Heegner points and Tamagawa numbers, Compos. Math., Volume 144 (2008) no. 4, pp. 811-826 | DOI | MR | Zbl
[17] On the structure of Shafarevich–Tate groups, Algebraic geometry (Chicago, 1989) (Lecture Notes in Mathematics), Volume 1479, Springer, 1989, pp. 94-121 | DOI | Zbl
[18] Euler systems, The Grothendieck Festschrift. II (Progress in Mathematics), Volume 87, Birkhäuser, 1990, pp. 435-483 | MR | Zbl
[19] Vanishing of some Galois cohomology groups for elliptic curves, Elliptic curves, modular forms and Iwasawa theory (Cambridge, 2015) (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2015, pp. 373-399 | DOI | Zbl
[20] Selmer groups and Anticyclotomic -extensions, Proc. Camb. Philos. Soc., Volume 161 (2016) no. 3, pp. 409-433 | DOI | MR | Zbl
[21] Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians (Warszawa, 1983), PWN-Polish Scientific Publishers, 1984, pp. 185-211 | Zbl
[22] On the parity of Selmer groups II, C. R. Math. Acad. Sci. Paris, Volume 332 (2001) no. 2, pp. 99-104 | DOI | MR | Zbl
[23] The Euler system method for CM points on Shimura curves, -functions and Galois representations (Durham, 2004) (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2004, pp. 471-547 | Zbl
[24] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006 | Zbl
[25] Fonctions -adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. Fr., Volume 115 (1987), pp. 399-456 | DOI | Zbl
[26] Automorphisms of finite groups, J. Algebra, Volume 10 (1968), pp. 47-68 | MR | Zbl
[27] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl
[28] Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., Volume 116 (1994) no. 1-3, pp. 513-530 | DOI | Zbl
[29] Special values of anticyclotomic -functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 549-566 | MR | Zbl
[30] Gross–Zagier formula for , Asian J. Math., Volume 5 (2001) no. 2, pp. 183-290 | DOI | MR | Zbl
Cited by Sources: