In this paper we determine the group of rational automorphisms of binary cubic and quartic forms with integer coefficients and non-zero discriminant in terms of certain quadratic covariants of cubic and quartic forms. This allows one to give precise asymptotic formulae for the number of integers in an interval representable by a binary cubic or quartic form and extends work of Hooley. Further, we give the field of definition of lines contained in certain cubic and quartic surfaces related to binary cubic and quartic forms.
Dans cet article, nous décrivons le groupe d’automorphismes rationnels d’une forme binaire cubique ou quartique à coefficients entiers et à discriminant non nul en termes de certains covariants quadratiques des formes cubiques et quartiques. Cela nous permet d’étendre les travaux de Hooley et de donner des formules asymptotiques précises pour le nombre d’entiers appartenant à un intervalle et représentables par une forme cubique ou quartique donnée. En outre, nous déterminons le corps de définition des droites contenues dans certaines surfaces cubiques et quartiques associées à des formes cubiques et quartiques binaires.
Accepted:
Published online:
Keywords: Binary forms, cubic and quartic surfaces
Stanley Yao Xiao 1

@article{JTNB_2019__31_2_323_0, author = {Stanley Yao Xiao}, title = {On binary cubic and quartic forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {323--341}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1083}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1083/} }
TY - JOUR AU - Stanley Yao Xiao TI - On binary cubic and quartic forms JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 323 EP - 341 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1083/ DO - 10.5802/jtnb.1083 LA - en ID - JTNB_2019__31_2_323_0 ER -
%0 Journal Article %A Stanley Yao Xiao %T On binary cubic and quartic forms %J Journal de théorie des nombres de Bordeaux %D 2019 %P 323-341 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1083/ %R 10.5802/jtnb.1083 %G en %F JTNB_2019__31_2_323_0
Stanley Yao Xiao. On binary cubic and quartic forms. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 2, pp. 323-341. doi : 10.5802/jtnb.1083. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1083/
[1] The practical computation of areas associated with binary quartic forms, Math. Comput., Volume 66 (1997) no. 219, pp. 1269-1293 | DOI | MR | Zbl
[2] Klein forms and the generalized superelliptic equation, Ann. Math., Volume 177 (2013) no. 1, pp. 177-239 | MR | Zbl
[3] Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (2007) no. 1, pp. 39-52 | MR | Zbl
[4] Reduction of binary cubic and quartic forms, LMS J. Comput. Math., Volume 2 (1999), pp. 64-94 | MR | Zbl
[5] An effective version of Hilbert’s irreducibility theorem, Séminaire de théorie des nombres (Paris, 1988-1989) (Progress in Mathematics), Volume 91, Birkhäuser, 1988, pp. 241-249 | Zbl
[6] The density of rational points on curves and surfaces, Ann. Math., Volume 155 (2002), pp. 553-598 | DOI | MR | Zbl
[7] On binary cubic forms, J. Reine Angew. Math., Volume 226 (1967), pp. 30-87 | MR | Zbl
[8] On binary quartic forms, J. Reine Angew. Math., Volume 366 (1986), pp. 32-52 | MR | Zbl
[9] On binary cubic forms. II, J. Reine Angew. Math., Volume 521 (2000), pp. 185-240 | MR | Zbl
[10] Étude sur les formes binaires non quadratiques à indéterminées réelles ou complexes, Mem. Acad. Scin. l’Inst. France, Volume 55 (1917), pp. 1-293
[11] Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover Publications, 1956 | Zbl
[12] Classical Invariant Theory, London Mathematical Society Student Texts, 44, Cambridge University Press, 1999 | MR | Zbl
[13] Counting rational points on projective varieties (2009) (preprint) | Zbl
[14] On arithmetical properties of quartic surfaces, Proc. Lond. Math. Soc., Volume 49 (1946), pp. 353-395 | DOI | MR | Zbl
[15] On the representation of integers by binary forms, Math. Ann., Volume 375 (2019) no. 1-2, pp. 133-163 | DOI | MR | Zbl
Cited by Sources: