Given an elliptic curve and a Galois extension , we construct an exact functor from torsion-free modules over the endomorphism ring with a semilinear action to abelian varieties over that are -isogenous to a power of . As an application, we give a simple proof that every elliptic curve with complex multiplication geometrically is isogenous over the ground field to one with complex multiplication by a maximal order.
Soient une courbe elliptique et une extension de Galois. On construit un foncteur exact de la catégorie des modules sans torsion sur l’anneau des endomorphismes munis d’une action semi-linéaire de vers la catégorie des variétés algébriques sur qui sont -isogènes à une puissance de . Comme application, on donne une preuve simple du fait que toute courbe elliptique sur qui est géométriquement à multiplication complexe, est isogène sur à une courbe elliptique à multiplication complexe par un ordre maximal.
Accepted:
Published online:
DOI: 10.5802/jtnb.1075
Keywords: abelian varieties, complex multiplication, isogenies
Isabel Vogt 1

@article{JTNB_2019__31_1_205_0, author = {Isabel Vogt}, title = {Abelian varieties isogenous to a power of an elliptic curve over a {Galois} extension}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {205--213}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1075}, mrnumber = {3994726}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/} }
TY - JOUR AU - Isabel Vogt TI - Abelian varieties isogenous to a power of an elliptic curve over a Galois extension JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 205 EP - 213 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/ DO - 10.5802/jtnb.1075 LA - en ID - JTNB_2019__31_1_205_0 ER -
%0 Journal Article %A Isabel Vogt %T Abelian varieties isogenous to a power of an elliptic curve over a Galois extension %J Journal de théorie des nombres de Bordeaux %D 2019 %P 205-213 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/ %R 10.5802/jtnb.1075 %G en %F JTNB_2019__31_1_205_0
Isabel Vogt. Abelian varieties isogenous to a power of an elliptic curve over a Galois extension. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 205-213. doi : 10.5802/jtnb.1075. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/
[1] Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, 1998 | Zbl
[2] Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not., Volume 2017 (2017) no. 16, pp. 4923-4961 | MR | Zbl
[3] Torsion points on elliptic curves with complex multiplication, Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | DOI | Zbl
[4] Abelian varieties isogenous to a power of an elliptic curve, Compos. Math., Volume 154 (2018) no. 5, pp. 934-959 | DOI | MR | Zbl
[5] Degree of isogenies of elliptic curves with complex multiplication, J. Korean Math. Soc., Volume 36 (1999) no. 5, pp. 945-958 | MR | Zbl
[6] Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton–Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1997, pp. 167-234 | DOI | Zbl
[7] A local-global principle for isogenies of composite degree (2018) (https://arxiv.org/abs/1801.05355)
Cited by Sources: