We study the discrepancy of two-dimensional digital nets for finite . In the year 2001 Larcher and Pillichshammer identified a class of digital nets for which the symmetrized version in the sense of Davenport has discrepancy of the order , which is best possible due to the celebrated result of Roth. However, it remained open whether this discrepancy bound also holds for the original digital nets without any modification.
In the present paper we identify nets from the above mentioned class for which the symmetrization is not necessary in order to achieve the optimal order of discrepancy for all .
Our findings are in the spirit of a paper by Bilyk from 2013, who considered the discrepancy of lattices consisting of the elements for , and who gave Diophantine properties of which guarantee the optimal order of discrepancy.
Nous étudions la discrépance () de réseaux digitaux de dimension En 2001, Larcher et Pillichshammer ont identifié une classe de -réseaux pour lesquels la version symétrisée au sens de Davenport a une discrépance d’ordre , qui est optimal grâce au résultat célèbre de Roth. Cependant la question de savoir si la même borne s’applique à la discrépance des réseaux originaux est restée ouverte.
Dans cet article, nous identifions les réseaux digitaux de la classe susmentionnée pour lesquels la symétrisation n’est pas nécessaire pour obtenir l’ordre optimal de la discrépance pour .
Ce résultat est dans l’esprit d’un article de Bilyk de 2013, qui a étudié la discrépance des ensembles des points de la forme pour et a donné des propriétés diophantiennes de qui garantissent l’ordre optimal de la discrépance .
Accepted:
Published online:
DOI: 10.5802/jtnb.1074
Keywords: $L_p$ discrepancy, digital nets, Hammersley net
@article{JTNB_2019__31_1_179_0, author = {Ralph Kritzinger and Friedrich Pillichshammer}, title = {Digital nets in dimension two with the optimal order of $L_p$ discrepancy}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {179--204}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1074}, mrnumber = {3994725}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/} }
TY - JOUR AU - Ralph Kritzinger AU - Friedrich Pillichshammer TI - Digital nets in dimension two with the optimal order of $L_p$ discrepancy JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 179 EP - 204 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/ DO - 10.5802/jtnb.1074 LA - en ID - JTNB_2019__31_1_179_0 ER -
%0 Journal Article %A Ralph Kritzinger %A Friedrich Pillichshammer %T Digital nets in dimension two with the optimal order of $L_p$ discrepancy %J Journal de théorie des nombres de Bordeaux %D 2019 %P 179-204 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/ %R 10.5802/jtnb.1074 %G en %F JTNB_2019__31_1_179_0
Ralph Kritzinger; Friedrich Pillichshammer. Digital nets in dimension two with the optimal order of $L_p$ discrepancy. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 179-204. doi : 10.5802/jtnb.1074. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/
[1] The -discrepancy of irrational lattices, Monte Carlo and Quasi-Monte Carlo Methods 2012 (Springer Proceedings in Mathematics & Statistics), Volume 65, Springer, 2013, pp. 289-296 | DOI | MR | Zbl
[2] Note on irregularities of distribution, Mathematika, Volume 3 (1956), pp. 131-135 | DOI | MR | Zbl
[3] Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration, Cambridge University Press, 2010 | Zbl
[4] discrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math., Volume 158 (2009) no. 1, pp. 31-61 | DOI | Zbl
[5] On Roth’s method in the theory of irregularities of point distributions, Recent progress in analytic number theory, Academic Press Inc., 1981, pp. 79-94 | Zbl
[6] The extreme and discrepancies of some plane sets, Monatsh. Math., Volume 73 (1969), pp. 316-328 | DOI | MR | Zbl
[7] Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness, Math. Nachr., Volume 283 (2010) no. 3, pp. 478-488 | DOI | MR | Zbl
[8] Optimal order of discrepancy of digit shifted Hammersley point sets in dimension 2, Unif. Distrib. Theory, Volume 10 (2015) no. 1, pp. 115-133 | Zbl
[9] Finding exact formulas for the discrepancy of digital -nets via Haar functions, Acta Arith., Volume 187 (2018) no. 2, pp. 151-187 | DOI | MR | Zbl
[10] Uniform distribution of sequences, Pure and Applied Mathematics, John Wiley & Sons, 1974 | Zbl
[11] Walsh series analysis of the discrepancy of symmetrisized point sets, Monatsh. Math., Volume 132 (2001) no. 1, pp. 1-18 | DOI | Zbl
[12] Sums of distances to the nearest integer and the discrepancy of digital nets, Acta Arith., Volume 106 (2003) no. 4, pp. 379-408 | DOI | MR | Zbl
[13] Introduction to Quasi-Monte Carlo Integration and Applications, Compact Textbooks in Mathematics, Birkhäuser, 2014 | DOI | Zbl
[14] Question 1547, L’Intermédiaire des Mathématiciens, Volume 11 (1904), pp. 144-145
[15] Point sets and sequences with small discrepancy, Monatsh. Math., Volume 104 (1987), pp. 273-337 | DOI | MR | Zbl
[16] Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Mathematics, 1992 | MR | Zbl
[17] On the discrepancy of the Hammersley point set, Monatsh. Math., Volume 136 (2002) no. 1, pp. 67-79 | DOI | Zbl
[18] On irregularities of distribution, Mathematika, Volume 1 (1954), pp. 73-79 | DOI | Zbl
[19] Irregularities of distribution. VII., Acta Arith., Volume 21 (1972), pp. 45-50 | DOI | MR | Zbl
[20] Irregularities of distribution. X, Number Theory and Algebra, Academic Press Inc., 1977, pp. 311-329 | Zbl
[21] Plane nets of integration, Zh. Vychisl. Mat. Mat. Fiz., Volume 7 (1967) no. 1, pp. 189-196 | MR | Zbl
[22] Computational investigations of low discrepancy point sets, Applications of Number Theory to Numerical Analysis, Academic Press Inc., 1972 | MR | Zbl
Cited by Sources: