Digital nets in dimension two with the optimal order of L p discrepancy
Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 179-204.

Nous étudions la discrépance L p (p[1,)) de réseaux digitaux de dimension 2. En 2001, Larcher et Pillichshammer ont identifié une classe de (0,n,2)-réseaux pour lesquels la version symétrisée au sens de Davenport a une discrépance L 2 d’ordre logN/N, qui est optimal grâce au résultat célèbre de Roth. Cependant la question de savoir si la même borne s’applique à la discrépance des réseaux originaux est restée ouverte.

Dans cet article, nous identifions les réseaux digitaux de la classe susmentionnée pour lesquels la symétrisation n’est pas nécessaire pour obtenir l’ordre optimal de la discrépance L p pour p[1,).

Ce résultat est dans l’esprit d’un article de Bilyk de 2013, qui a étudié la discrépance L 2 des ensembles des points de la forme (k/N,{kα}) pour k=0,1,...,N-1 et a donné des propriétés diophantiennes de α qui garantissent l’ordre optimal de la discrépance L 2 .

We study the L p discrepancy of two-dimensional digital nets for finite p. In the year 2001 Larcher and Pillichshammer identified a class of digital nets for which the symmetrized version in the sense of Davenport has L 2 discrepancy of the order logN/N, which is best possible due to the celebrated result of Roth. However, it remained open whether this discrepancy bound also holds for the original digital nets without any modification.

In the present paper we identify nets from the above mentioned class for which the symmetrization is not necessary in order to achieve the optimal order of L p discrepancy for all p[1,).

Our findings are in the spirit of a paper by Bilyk from 2013, who considered the L 2 discrepancy of lattices consisting of the elements (k/N,{kα}) for k=0,1,...,N-1, and who gave Diophantine properties of α which guarantee the optimal order of L 2 discrepancy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1074
Classification : 11N06, 11K38
Mots clés : $L_p$ discrepancy, digital nets, Hammersley net
Ralph Kritzinger 1 ; Friedrich Pillichshammer 1

1 Altenbergerstr. 69 4040 Linz, Austria
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2019__31_1_179_0,
     author = {Ralph Kritzinger and Friedrich Pillichshammer},
     title = {Digital nets in dimension two with the optimal order of $L_p$ discrepancy},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {179--204},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {1},
     year = {2019},
     doi = {10.5802/jtnb.1074},
     mrnumber = {3994725},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/}
}
TY  - JOUR
AU  - Ralph Kritzinger
AU  - Friedrich Pillichshammer
TI  - Digital nets in dimension two with the optimal order of $L_p$ discrepancy
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 179
EP  - 204
VL  - 31
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/
DO  - 10.5802/jtnb.1074
LA  - en
ID  - JTNB_2019__31_1_179_0
ER  - 
%0 Journal Article
%A Ralph Kritzinger
%A Friedrich Pillichshammer
%T Digital nets in dimension two with the optimal order of $L_p$ discrepancy
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 179-204
%V 31
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/
%R 10.5802/jtnb.1074
%G en
%F JTNB_2019__31_1_179_0
Ralph Kritzinger; Friedrich Pillichshammer. Digital nets in dimension two with the optimal order of $L_p$ discrepancy. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 179-204. doi : 10.5802/jtnb.1074. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1074/

[1] Dmitriy Bilyk The L 2 -discrepancy of irrational lattices, Monte Carlo and Quasi-Monte Carlo Methods 2012 (Springer Proceedings in Mathematics & Statistics), Volume 65, Springer, 2013, pp. 289-296 | DOI | MR | Zbl

[2] Harold Davenport Note on irregularities of distribution, Mathematika, Volume 3 (1956), pp. 131-135 | DOI | MR | Zbl

[3] Josef Dick; Friedrich Pillichshammer Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration, Cambridge University Press, 2010 | Zbl

[4] Henri Faure; Friedrich Pillichshammer L p discrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math., Volume 158 (2009) no. 1, pp. 31-61 | DOI | Zbl

[5] Gabor Halász On Roth’s method in the theory of irregularities of point distributions, Recent progress in analytic number theory, Academic Press Inc., 1981, pp. 79-94 | Zbl

[6] John H. Halton; Stanislaw K. Zaremba The extreme and L 2 discrepancies of some plane sets, Monatsh. Math., Volume 73 (1969), pp. 316-328 | DOI | MR | Zbl

[7] Aicke Hinrichs Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness, Math. Nachr., Volume 283 (2010) no. 3, pp. 478-488 | DOI | MR | Zbl

[8] Aicke Hinrichs; Ralph Kritzinger; Friedrich Pillichshammer Optimal order of L p discrepancy of digit shifted Hammersley point sets in dimension 2, Unif. Distrib. Theory, Volume 10 (2015) no. 1, pp. 115-133 | Zbl

[9] Ralph Kritzinger Finding exact formulas for the L 2 discrepancy of digital (0,n,2)-nets via Haar functions, Acta Arith., Volume 187 (2018) no. 2, pp. 151-187 | DOI | MR | Zbl

[10] L. Kuipers; Harald Niederreiter Uniform distribution of sequences, Pure and Applied Mathematics, John Wiley & Sons, 1974 | Zbl

[11] Gerhard Larcher; Friedrich Pillichshammer Walsh series analysis of the L 2 discrepancy of symmetrisized point sets, Monatsh. Math., Volume 132 (2001) no. 1, pp. 1-18 | DOI | Zbl

[12] Gerhard Larcher; Friedrich Pillichshammer Sums of distances to the nearest integer and the discrepancy of digital nets, Acta Arith., Volume 106 (2003) no. 4, pp. 379-408 | DOI | MR | Zbl

[13] Gunther Leobacher; Friedrich Pillichshammer Introduction to Quasi-Monte Carlo Integration and Applications, Compact Textbooks in Mathematics, Birkhäuser, 2014 | DOI | Zbl

[14] Matyáš Lerch Question 1547, L’Intermédiaire des Mathématiciens, Volume 11 (1904), pp. 144-145

[15] Harald Niederreiter Point sets and sequences with small discrepancy, Monatsh. Math., Volume 104 (1987), pp. 273-337 | DOI | MR | Zbl

[16] Harald Niederreiter Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Mathematics, 1992 | MR | Zbl

[17] Friedrich Pillichshammer On the L p discrepancy of the Hammersley point set, Monatsh. Math., Volume 136 (2002) no. 1, pp. 67-79 | DOI | Zbl

[18] Klaus F. Roth On irregularities of distribution, Mathematika, Volume 1 (1954), pp. 73-79 | DOI | Zbl

[19] Wolfgang M. Schmidt Irregularities of distribution. VII., Acta Arith., Volume 21 (1972), pp. 45-50 | DOI | MR | Zbl

[20] Wolfgang M. Schmidt Irregularities of distribution. X, Number Theory and Algebra, Academic Press Inc., 1977, pp. 311-329 | Zbl

[21] I. V. Vilenkin Plane nets of integration, Zh. Vychisl. Mat. Mat. Fiz., Volume 7 (1967) no. 1, pp. 189-196 | MR | Zbl

[22] Tony T. Warnock Computational investigations of low discrepancy point sets, Applications of Number Theory to Numerical Analysis, Academic Press Inc., 1972 | MR | Zbl

Cité par Sources :