Class field theory for open curves over local fields
Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 501-524.

Nous étudions la théorie des corps de classes des courbes ouvertes sur un corps local. Après avoir introduit l’application de réciprocité nous déterminons son noyau et son conoyau. La duale de Pontrjagin de l’application de réciprocitIé est également étudiée. Cela nous donne, sous certaines hypothèses, une correspondance bijective entre l’ensemble des revêtements étales abéliens et l’ensemble des sous-groupes ouverts d’indice fini du groupe des classes d’idèles.

We study the class field theory for open curves over a local field. After introducing the reciprocity map, we determine the kernel and the cokernel of this map. In addition to this, the Pontrjagin dual of the reciprocity map is also investigated. This gives the one to one correspondence between the set of abelian étale coverings and the set of finite index open subgroups of the idèle class group as in the classical class field theory under some assumptions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1036
Classification : 11R37,  11R58
Mots clés : Class field theory, local fields
@article{JTNB_2018__30_2_501_0,
     author = {Toshiro Hiranouchi},
     title = {Class field theory for open curves over local fields},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {501--524},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {2},
     year = {2018},
     doi = {10.5802/jtnb.1036},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1036/}
}
TY  - JOUR
AU  - Toshiro Hiranouchi
TI  - Class field theory for open curves over local fields
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2018
DA  - 2018///
SP  - 501
EP  - 524
VL  - 30
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1036/
UR  - https://doi.org/10.5802/jtnb.1036
DO  - 10.5802/jtnb.1036
LA  - en
ID  - JTNB_2018__30_2_501_0
ER  - 
Toshiro Hiranouchi. Class field theory for open curves over local fields. Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 501-524. doi : 10.5802/jtnb.1036. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1036/

[1] Ahmed Abbes; Takeshi Saito Ramification of local fields with imperfect residue fields, Am. J. Math., Volume 124 (2002) no. 5, pp. 879-920 | Zbl 1084.11064

[2] Ahmed Abbes; Takeshi Saito Analyse micro-locale l-adique en caractéristique p>0: le cas d’un trait, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 1, pp. 25-74 | Zbl 1225.11151

[3] Michael Artin; Alexander Grothendieck; Jean-Louis Verdier Theorie de topos et cohomologie etale des schemas I, II, III (SGA 4), Lecture Notes in Mathematics, Volume 269, 370, 305, Springer, 1972-1973 | Zbl 0234.00007; 0237.00012; 0245.00002

[4] Pierre Deligne Cohomologie étale (SGA 41 2), Lecture Notes in Mathematics, Volume 569, Springer, 1977, iv+312 pages | Zbl 0345.00010

[5] Ivan B. Fesenko Topological Milnor K-groups of higher local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs) Volume 3, Geometry and Topology Publications, 2000, pp. 61-74 | Zbl 1008.11065

[6] Ivan B. Fesenko Sequential topologies and quotients of Milnor K-groups of higher local fields, Algebra Anal., Volume 13 (2001) no. 3, pp. 198-221

[7] Ivan B. Fesenko; Sergei V. Vostokov Local fields and their extensions, Translations of Mathematical Monographs, Volume 121, American Mathematical Society, 2002 | Zbl 1156.11046

[8] Patrick Forré The kernel of the reciprocity map of varieties over local fields, J. Reine Angew. Math., Volume 698 (2015), pp. 55-69 | Zbl 1348.11053

[9] Lei Fu Etale cohomology theory, Nankai Tracts in Mathematics, Volume 13, World Scientific, 2011, ix+611 pages | Zbl 1228.14001

[10] Revêtements étales et groupe fondamental, Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1) (Alexander Grothendieck, ed.), Lecture Notes in Mathematics, Volume 224, Springer, 1971, xxii+447 pages | Zbl 0234.14002

[11] Toshiro Hiranouchi Class field theory for open curves over p-adic fields, Math. Z., Volume 266 (2010) no. 1, pp. 107-113 | Zbl 1233.11076

[12] Roland Huber étale cohomology of Henselian rings and cohomology of abstract Riemann surfaces of fields, Math. Ann., Volume 295 (1993) no. 4, pp. 703-708 | Zbl 0789.14013

[13] Luc Illusie Complexe de de Rham-Witt (Astérisque) Volume 63, Société Mathématique de France, 1978, pp. 83-112 | Zbl 0446.14008

[14] Uwe Jannsen; Shuji Saito Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math. (2003), pp. 479-538 | Zbl 1092.14504

[15] Kazuya Kato A generalization of local class field theory by using K-groups. I, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 26 (1979) no. 2, pp. 303-376 | Zbl 0428.12013

[16] Kazuya Kato Galois cohomology of complete discrete valuation fields, Algebraic K-theory, Part II (Oberwolfach, 1980) (Lecture Notes in Mathematics) Volume 967, Springer, 1980, pp. 215-238 | Zbl 0506.12022

[17] Kazuya Kato A generalization of local class field theory by using K-groups. II, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 3, pp. 603-683 | Zbl 0463.12006

[18] Kazuya Kato Swan conductors for characters of degree one in the imperfect residue field case, Algebraic K-theory and algebraic number theory (Honolulu, 1987) (Contemporary Mathematics) Volume 83, American Mathematical Society, 1987, pp. 101-131 | Zbl 0716.12006

[19] Kazuya Kato; Shuji Saito Two-dimensional class field theory, Galois groups and their representations (Nagoya, 1981) (Advanced Studies in Pure Mathematics) Volume 2, North-Holland, 1981, pp. 103-152 | Zbl 0544.12011

[20] Kazuya Kato; Shuji Saito Global class field theory of arithmetic schemes, Applications of algebraic K-theory to algebraic geometry and number theory (Boulder, 1983) (Contemporary Mathematics) Volume 55, American Mathematical Society, 1983, pp. 255-331 | Zbl 0614.14001

[21] Aleksandr S. Merkurʼev; Andreĭ A. Suslin K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., Volume 46 (1982) no. 5, pp. 1011-1046 | Zbl 0525.18008

[22] James S. Milne Étale cohomology, Princeton Mathematical Series, Volume 33, Princeton University Press, 1980, xiii+323 pages | Zbl 0433.14012

[23] James S. Milne Arithmetic duality theorems, BookSurge, 2006, viii+339 pages | Zbl 1127.14001

[24] John W. Milnor Algebraic K-theory and quadratic forms, Invent. Math., Volume 9 (1970), pp. 318-344 | Zbl 0199.55501

[25] John W. Milnor Introduction to algebraic K-theory, Annals of Mathematics Studies, Volume 72, Princeton University Press, 1971, xiii+184 pages | Zbl 0237.18005

[26] Jürgen Neukirch Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, Volume 322, Springer, 1999, xvii+571 pages | Zbl 0956.11021

[27] Jürgen Neukirch; Alexander Schmidt; Kay Wingberg Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, Volume 323, Springer, 2008, xv+825 pages | Zbl 1136.11001

[28] Wayne Raskind Abelian class field theory of arithmetic schemes, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, 1992) (Proceedings of Symposia in Pure Mathematics) Volume 58, American Mathematical Society, 1992, pp. 85-187 | Zbl 0832.19004

[29] Shuji Saito Class field theory for curves over local fields, J. Number Theory, Volume 21 (1985) no. 1, pp. 44-80 | Zbl 0599.14008

[30] Shuji Saito A global duality theorem for varieties over global fields, Algebraic K-theory: connections with geometry and topology (Lake Louise, 1987) (NATO ASI Series, Series C: Mathematical and Physical Sciences) Volume 279, Kluwer Academic Publishers, 1987, pp. 425-444 | Zbl 0735.14015

[31] Jean-Pierre Serre Corps locaux, Publications de l’Université de Nancago, Volume VIII, Hermann, 1980 | Zbl 0423.12017

[32] Takao Yamazaki Class field theory for a product of curves over a local field, Math. Z., Volume 261 (2009) no. 1, pp. 109-121 | Zbl 1238.11071

[33] Takao Yamazaki The Brauer-Manin pairing, class field theory, and motivic homology, Nagoya Math. J., Volume 210 (2013), pp. 29-58 | Zbl 1325.11125

[34] Teruyoshi Yoshida Finiteness theorems in the class field theory of varieties over local fields, J. Number Theory, Volume 101 (2003) no. 1, pp. 138-150 | Zbl 1086.14018

Cité par Sources :