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Class field theory for open curves over local fields

par Toshiro HIRANOUCHI

Résumé. Nous étudions la théorie des corps de classes des courbes ouvertes
sur un corps local. Après avoir introduit l’application de réciprocité nous dé-
terminons son noyau et son conoyau. La duale de Pontrjagin de l’application
de réciprocitIé est également étudiée. Cela nous donne, sous certaines hypo-
thèses, une correspondance bijective entre l’ensemble des revêtements étales
abéliens et l’ensemble des sous-groupes ouverts d’indice fini du groupe des
classes d’idèles.

Abstract. We study the class field theory for open curves over a local
field. After introducing the reciprocity map, we determine the kernel and the
cokernel of this map. In addition to this, the Pontrjagin dual of the reciprocity
map is also investigated. This gives the one to one correspondence between the
set of abelian étale coverings and the set of finite index open subgroups of the
idèle class group as in the classical class field theory under some assumptions.

1. Introduction

In this note, we present the class field theory for open (=non proper)
curves over a local field with arbitrary characteristic. Here, a local field
means a complete discrete valuation field with finite residue field. For a local
field with characteristic 0, a large number of studies have been made even for
higher dimensional open varieties over the local field (e.g. [11, 14, 32, 33]).
Accordingly, our main interest is in the case of positive characteristic local
fields.

To state our results precisely, let k be a local field with char(k) = p > 0.
Let X be a proper, smooth and geometrically connected curve over k and
X a nonempty open subscheme in X. We often say that the pair X ⊂
X is an open curve (cf. Definition 3.1). A topological group C(X) which
is called the idèle class group, and the reciprocity map ρX : C(X) →
πab

1 (X) are introduced as in [11] (Definition 3.2 and Definition 3.3). In this
note, we determine the kernel Ker(ρX) and the cokernel Cokertop(ρX) :=
πab

1 (X)/Im(ρX) of ρX as (Hausdorff) topological groups, where Im(ρX) is
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the topological closure of the image Im(ρX). One of the main results in this
note is the following theorem.

Theorem 1.1 (Theorem 4.2 and Theorem 4.6). Let X ⊂ X be as above.
For the reciprocity map ρX : C(X)→ πab

1 (X), we have
(1) Cokertop(ρX) ' Ẑr for some r ∈ Z≥0, and
(2) Ker(ρX) is the maximal l-divisible subgroup of C(X) for all prime

number l 6= p.

The theorem above is known for X = X ([29]) which corresponds to the
unramified class field theory. Here, the invariant r = r(X) is called the rank
of X ([29, Chap. II, Def. 2.5]). For the special fiber J of the Néron model of
the Jacobian variety of X, the rank r equals the dimension of the maximal
split subtorus (over the residue field of k) of J ([29, Chap. II, Thm. 6.2], see
also [34, Thm. 1.1]). For example, we have r = 0 if X has good reduction.
Theorem 1.1 is essentially followed from the arguments used in [11]. It is
known that the quotient group Cokertop(ρX) = πab

1 (X)/Im(ρX) classifies
completely split coverings of X, that is, finite abelian étale coverings of X
in which any closed point x ∈ X splits completely ([29, Chap. II, Def. 2.1]).
In the case of X = X, it is known that Ker(ρX) is the maximal divisible
subgroup of C(X) ([34]). At the moment, we have no examples of an open
curve X with Ker(ρX)/p 6= 0.

Our main contribution is the following theorem on the Pontrjagin dual
of the reciprocity map: For a topological abelian group G, we define the
Pontrjagin dual group of G by

G∨ := {continuous homomorphism G→ Q/Z with finite order}

(cf. Notation). Using this, the reciprocity map ρX induces ρ∨X : πab
1 (X)∨ →

C(X)∨.

Theorem 1.2 (Theorem 5.5). Let X ⊂ X be as above. We assume r(X) =
0. Then, the map ρ∨X : πab

1 (X)∨ → C(X)∨ is bijective.

Since πab
1 (X) is compact, the injectivity of ρ∨X in Theorem 1.2 is de-

duced from Theorem 1.1(1). However, our idèle class group C(X) may not
be locally compact. We have to determine Ker(ρX) and Coker(ρ∨X) inde-
pendently. The assumption on the rank: r(X) = 0 in this theorem is purely
technical. For the case r(X) > 0, although we have Ker(ρ∨X) ' (Q/Z)r from
Theorem 1.1, the author does not know if ρ∨X is still surjective. From this
theorem, under the assumption r(X) = 0, we have the following one to one
correspondence as in the classical class field theory:

{abelian étale covering of X} 1:1←→ {finite index open subgroup of C(X)} .
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Contents. The contents of this note is the following:
• Section 2: We review some definitions and results of class field the-
ory for 2-dimensional local fields following [15] and [17].
• Section 3: For an open curve X ⊂ X over a local field, the idèle
class group C(X) and the reciprocity map ρX : C(X) → πab

1 (X)
are introduced (Definition 3.2 and Definition 3.3). We also define
the fundamental group πab

1 (X,D) as a quotient of πab
1 (X) which

classifies abelian étale coverings of X with bounded ramification
along a given effective Weil divisor D on X (Definition 3.4).
• Section 4: After recalling the unramified class field theory (Theo-
rem 4.1), we study the structure of the tame fundamental group
πt,ab

1 (X) = πab
1 (X,X∞), where X∞ =

∑
x∈X\X 1[x] considering as

a Weil divisor on X. Using this structure theorem, we prove Theo-
rem 1.1 (=Theorem 4.6).
• Section 5: Following the proof of the class field theory for curves
over global fields ([19, Lem. 3], [20, Thm. 9.1]) basically, we show
Theorem 1.2 (=Theorem 5.5). By using results in Section 4, the
proof is simpler than that of Kato and Saito’s.

Notation. In this note, a local field we mean a complete discrete valuation
field with finite residue field. Throughout this note, we use the following
notation:

• p: a fixed prime number, and
• N′: the set of m ∈ Z≥1 which is prime to p.

For a field F ,
• char(F ): the characteristic of F ,
• F : a separable closure of F ,
• GF := Gal(F/F ): the Galois group of the extension F/F ,
• F ab: the maximal abelian extension of F in F ,
• Gab

F := Gal(F ab/F ): the Galois group of F ab/F ,
• Hn

Gal(F,M): the Galois cohomology group of GF with coefficients
in a GF -module M (cf. [16]), and
• K2(F ): the Milnor K-group of degree 2 which is defined by

K2(F ) =
(
F× ⊗Z F

×) /J,
where J is the subgroup generated by elements of the form a⊗(1−a)
(a ∈ F×). The element in K2(F ) represented by a⊗ b ∈ F× ⊗Z F

×

is denoted by {a, b} (cf. [24]).
Let A be an abelian group whose operation is written additively. The

abelian group A is said to be divisible if, for every n ∈ Z≥1 and every
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x ∈ A, there exists y ∈ A such that ny = x. The abelian group A is l-
divisible for a prime l, if for all n ∈ Z≥1 and every x ∈ A, there exists y ∈ A
such that lny = x. For n ∈ Z≥1, we use the following notation on A:

• A/n := the cokernel of the map n : A→ A defined by x 7→ nx, and
• Ator: the torsion part of A.

When A is a topological abelian group, define
• A∨: the set of all continuous homomorphisms A → Q/Z of finite
order, where Q/Z is given the discrete topology.

A curve over a field F means an integral separated scheme of dimension 1
over Spec(F ). For a connected Noetherian scheme X, we denote by

• πab
1 (X): the abelianlization of the étale fundamental group of X

([10]) omitting the base point,
• Hn(X,F ): the étale cohomology group of an étale sheaf F on X,
and
• Hn

Z(X,F ): the étale cohomology group of an étale sheaf F on X
with support in Z.

An étale covering Y of a scheme X means a finite étale morphism Y → X

2. Local class field theory

For a field F with char(F ) = p, n ∈ Z≥0 and r ∈ Z≥1, we define

Hq
Gal(F,Z/p

r(n)) := Hq−n
Gal (F,WrΩn

F ,log),

where WrΩn
F ,log is the Galois module defined by the étale sheaf of the

logarithmic part of the de Rham–Witt complex ([13]). Recall that N′ is
the set of m ∈ Z≥1 which is prime to p (cf. Notation). For m ∈ N′, define
Z/m(0) := Z/m with the trivial action of GF , and Z/m(n) := µm(F )⊗n
for n ≥ 1, where µm(F ) is the Galois module of m-th roots of unity in F .
We define (following [17, §3.2, Def. 1])

H0(F ) := lim−→
m∈N′

H0
Gal(F,Z/m(−1)),

where Z/m(−1) := Hom(µm(F ),Q/Z) on which GF acts by f 7→ f ◦ σ−1

for σ ∈ GF , f ∈ Z/m(−1) (cf. [17, §1.2]). For n ∈ Z≥1,

Hn(F ) := lim−→
m∈N′

Hn
Gal(F,Z/m(n− 1))⊕ lim−→

r∈Z≥1

Hn
Gal(F,Z/pr(n− 1)).

Using these, it is known that we have

(2.1) H1(F ) ' (GF )∨ ' (Gab
F )∨

(cf. [17, §3.2]; see also [28, Chap. 2]). From this isomorphism, we identify
H1(F ) and (Gab

F )∨ in the following.
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2-dimensional local class field theory. We recall the 2-dimensional
local class field theory following [15] and [17]. For detailed expositions on
this section, we also recommend [28, Chap. 2].

Definition 2.1. A 2-dimensional local field is a complete discrete valuation
field whose residue field is a local field.

Throughout this section, we fix such a field and use the following nota-
tion:

• K : a 2-dimensional local field of char(K) = p,
• vK : K× → Z: the valuation of K,
• OK := {f ∈ K | vK(f) ≥ 0} : the valuation ring of K,
• mK := {f ∈ K | vK(f) > 0} : the maximal ideal of OK ,
• k := OK/mK : the residue field of K,
• UK := O×K : the group of units in OK , and
• ∂K : K2(K)→ k× : the boundary map defined by

(2.2) ∂K({f, g}) := (−1)vK(f)vK(g)fvK(g)g−vK(f) mod mK ,

for {f, g} ∈ K2(K).
The class field theory of K describes the abelian Galois group Gab

K =
Gal(Kab/K) by a canonical homomorphism ρK : K2(K)→ Gab

K called the
reciprocity map (defined in [17, §3.2]).

Proposition 2.2 ([17, §3.2, Exp. 1 and 2]; see also [28, §2.1]).
(1) We have the following commutative diagram

K2(K) ρK //

∂K

��

Gab
K

��
k×

ρk // Gab
k ,

where ρk is the reciprocity map of k, and the right vertical map is
the restriction.

(2) For a finite extension L/K, the following diagram is commutative:

K2(K) ρK // Gab
K

K2(L) ρL //

NL/K

OO

Gab
L ,

ResL/K

OO

where NL/K is the norm map (defined in [17, §1.7]), and the right
vertical map ResL/K is the restriction.
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(3) For a finite extension L/K, the following diagram is commutative:

K2(K) ρK //

iL/K

��

Gab
K

VerL/K

��
K2(L) ρL // Gab

L ,

where iL/K is the map induced from the inclusion K ↪→ L, and the
right vertical map VerL/K is the transfer map ([27, §1.5]).

The multiplicative group K× and the Milnor K-group K2(K) have good
topologies (introduced in [15, §7], see also [28, §2.3]). We omit the de-
tailed exposition on the definitions of these topologies. However, under the
topologies, the following properties hold:

• The reciprocity map ρK is continuous.
• The unit group UK = O×K is open in K×.
• The topology onK2(K) is given by the strongest topology for the so
called symbol map K××K× → K2(K); f⊗g 7→ {f, g} is continuous.
• For a finite extension L/K, the norm map ([17, §1.7]) NL/K :
K2(L)→ K2(K) is continuous.

Note also that any continuous homomorphism K2(K)→ Q/Z is automati-
cally of finite order with respect to this topology ([17, §3.5, Rem. 4]). Recall
that an element χ ∈ H1(K) = (Gab

K )∨ (cf. (2.1)) is said to be unramified if
the corresponding cyclic extension of K is unramified.

Theorem 2.3 ([17, §3.1, 3.5], [29, Chap. I, Thm. 3.1]). The reciprocity
map ρK satisfies the following:

(1) The map ρK induces an isomorphism ρ∨K : H1(K) '→ K2(K)∨.
(2) An element χ ∈ H1(K) is unramified if and only if ρ∨K(χ) annihi-

lates U0K2(K) := Ker(∂K).

We denote by IK the ineria subgroup of Gab
K which is defined by the

kernel of the restriction Gab
K → Gab

k . For any m ∈ Z≥1, the reciprocity map
ρK induces ρK,m : K2(K)/m → Gab

K /m. Theorem 2.3(1) implies that the
dual of this homomorphism

(2.3) ρ∨K,m : (Gab
K /m)∨ = H1(K,Z/m) '−→ (K2(K)/m)∨

is bijective. The following theorem says that ρK,m is injective for each m ∈
Z≥1.

Theorem 2.4 ([6, Thm. 4.5], see also [5, Thm. 2]). Ker(ρK) is divisible.
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Ramification theory. For m ∈ Z≥1, let UmK = 1 +mm
K be the higher unit

groups of K. Denote by UmK2(K) the subgroup of K2(K) generated by the
image of UmK ×K× in K2(K) by the symbol map. We also have an increas-
ing filtration {filmHq(K)}m∈Z≥0 on Hq(K) ([18, Def. 2.1]) with Hq(K) =
∪m∈Z≥0 filmHq(K). In particular, we have fil0H1(K) ' H1(k) ⊕ H0(k)
and this subgroup corresponding to tamely ramified abelian extensions of
K ([17, Thm. 3], [18, Prop. 6.1]). This filtration on H1(K) induces the
ramification filtration {ImK }m∈Z≥0 on Gab

K , which is defined by I0
K := IK

and
ImK := {σ ∈ Gab

K |χ(σ) = 0 for all χ ∈ film−1H
1(K)}

for m ≥ 1. The description of fil0H1(K) implies that ImK ⊂ IK = I0
K for

m ≥ 1 and I1
K is the wild inertia subgroup of Gab

K , that is, the maximal
pro-p subgroup of the inertia subgroup IK .

Proposition 2.5 ([18, Prop. 6.5, see also Rem. 6.6]). For χ ∈ H1(K), χ
is in filmH1(K) if and only if ρ∨K(χ) ∈ K2(K)∨ annihilates Um+1K2(K).

From Proposition 2.5, ρK induces UmK2(K)→ ImK for m ∈ Z≥0. In our
case of char(K) = p, it is known Im+1

K = Gab,m+
K,log for any m ∈ Z≥0, where

the right is the induced group from Abbes–Saito’s logarithmic version of
ramification subgroups on the absolute Galois group GK = Gal(K/K) ([1],
see also [2, Cor. 9.12]).

3. Curves over local fields

Let k be a local field of char(k) = p (cf. Notation).

Definition 3.1. We call the pair X ⊂ X of
• X: a smooth, proper and geometrically connected curve over k, and
• X: a nonempty open subscheme of X

an open curve over k.

Since the smooth compactification X of a smooth curve X is unique if it
exists by the valuative criterion of properness, we often omit X and write
X solely as an open curve in the above sense.

For an open curve X over k, we also define
• X∞ := X \X,
• X0: the set of closed points in X, and
• k(X): the function field of X.

For a closed point x ∈ X0, we denote by
• k(x) : the residue field at x which is a finite extension of k, and
• k(X)x : the completion of k(X) at x which is a 2-dimensional local
field (Definition 2.1) with residue field k(x).
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Idèle class groups. We fix an open curve X over k and introduce the
idèle class group and the reciprocity map for X.

Definition 3.2. The idèle class group C(X) is defined to be the cokernel of

∂ : K2(k(X)) −→
⊕
x∈X0

k(x)× ⊕
⊕
x∈X∞

K2(k(X)x)

which is given by the direct sum of the following homomorphisms:
• the boundary map ∂x := ∂k(X)x

: K2(k(X)x) → k(x)× (cf. (2.2))
for x ∈ X0, and
• K2(k(X)) → K2(k(X)x) induced by the inclusion ix : k(X) ↪→
k(X)x for x ∈ X∞.

The restricted product
∏∐
x∈X0

K2(k(X)x) with respect to the closed sub-
group U0K2(k(X)x) = ker(∂x) has a structure of a topological group in-
duced from the topology on K2(k(X)x) (cf. Section 2) as in the classical
class field theory (cf. [29, Chap. I, §3]). The idèle class group C(X) is a
quotient of

∏∐
x∈X0

K2(k(X)x) and is endowed with the quotient topology.
The abelian fundamental group πab

1 (X) has a description as a Galois
group: we have πab

1 (X) ' Gal(k(X)ur/k(X)), where k(X)ur is generated
by all finite separable extensions E of k(X) contained in k(X)ab satisfying
that the normalization X̃E → X of X in E is unramified (cf. [10, Exp. V,
8.2]). In particular, we have k(X)ur ⊂ k(X)ab so that the restriction gives
Gab
k(X) = Gal(k(X)ab/k(X)) � πab

1 (X). The 2-dimensional local class field
theory ρk(X)x

: K2(k(X)x) → Gab
k(X)x

and the restriction Gab
k(X)x

→ Gab
k(X)

induce a continuous homomorphism∏∐
x∈X0

K2(k(X)x) −→ Gab
k(X) −→−→ πab

1 (X).

By the reciprocity law of k(X) = k(X) ([29, Chap. II, Prop. 1.2]) and the
2-dimensional local class field theory (Theorem 2.3), this factors through
C(X).

Definition 3.3. The induced continuous homomorphism ρX : C(X) →
πab

1 (X) is called the reciprocity map of X.

We denote by

(3.1) Cokertop(ρX) := πab
1 (X)/Im(ρX),

where Im(ρX) is the topological closure of Im(ρX).
The norm map Nk(x)/k : k(x)× → k× for x ∈ X0 and the composition

Nk(x)/k ◦ ∂x : K2(k(X)x) → k× for x ∈ X∞ induce a homomorphism
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NX : C(X)→ k×. They make the following diagram commutative:

(3.2)

0 // C(X)0 //

ρ0
X
��

C(X) NX //

ρX

��

k×

ρk

��
0 // πab

1 (X)0 // πab
1 (X) ϕ // Gab

k
// 0,

where ϕ is the induced homomorphism from the structure morphism X →
Spec(k) ([9, §3.3]) and the groups C(X)0 and πab

1 (X)0 are defined by the
exactness of the horizontal rows.

Restricted ramification. For the open curve X, let D =
∑
x∈X∞mx[x]

be an effective Weil divisor on X with support |D| ⊂ X∞ = X \X.

Definition 3.4. By putting mx = 0 if x 6∈ |D|, we define the abelian
fundamental group πab

1 (X,D) with bounded ramification by

πab
1 (X,D) = Coker

 ⊕
x∈X∞

Imx

k(X)x
↪−→

⊕
x∈X∞

Gab
k(X)x

−→ πab
1 (X)

 ,
where Imx

k(X)x
is the ramification subgroup of Gab

k(X)x
= Gal(k(X)ab

x /k(X)x)
(Section 2).

By Proposition 2.5, the composition C(X) ρX→ πab
1 (X) � πab

1 (X,D) fac-
tors through

C(X,D) := Coker

 ⊕
x∈X∞

UmxK2(k(X)x) −→ C(X)


and the induced homomorphism is denoted by ρX,D : C(X,D)→πab

1 (X,D).
Furthermore, the norm mapsNk(x)/k : k(x)×→ k× defineNX,D : C(X,D)→
k× and the following diagram is commutative as in (3.2):

(3.3)
0 // C(X,D)0 //

ρ0
X,D
��

C(X,D)
NX,D //

ρX,D

��

k×

ρk

��
0 // πab

1 (X,D)0 // πab
1 (X,D) // Gab

k
// 0.

Here, the groups C(X,D)0 and πab
1 (X,D)0 are defined by the exactness of

the horizontal rows.
Consider X∞ =

∑
x∈X∞ 1[x] as a Weil divisor. Recalling that I1

k(X)x
is

the wild inertia subgroup, the groups

(3.4) πt,ab
1 (X) := πab

1 (X,X∞), and πt,ab
1 (X)0 := πab

1 (X,X∞)0
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classify tame coverings ofX, that is, finite étale coverings overX and ramify
at most tamely along the boundary X∞. We also employ the following
notation:

(3.5)
ρt
X := ρX,X∞ : Ct(X) := C(X,X∞) −→ πt,ab

1 (X),

and ρt,0
X := ρ0

X,X∞ : Ct(X)0 := C(X,X∞)0 −→ πt,ab
1 (X)0.

Functorial properties. We define the pullback and the norm homomor-
phism on the idèle class groups with respect to étale coverings of open
curves in the following sense.

Definition 3.5. An étale covering f : Y → X of open curves is defined to
be the commutative diagram

(3.6)
Y �
� //

f
��

Y

f��

Y∞?
_oo

��
X �
� // X X∞,? _oo

where the horizontal maps are the inclusions, f is a morphism of schemes
over Spec(k) and, f is an étale covering (that is, a finite étale morphism of
schemes, cf. Notation in Section 1) over Spec(k). The right commutative
square in (3.6) means f(Y∞) ⊂ X∞.

In the following, we fix an étale covering f : Y → X of open curves in
the above sense.

Definition 3.6. We define a canonical homomorphism iY/X := f∗ : C(X)→
C(Y ) as follows:

• For x ∈ X0 and y ∈ Y0 with f(y) = x, the inclusion k(x) ↪→ k(y)
gives ik(y)/k(x) : k(x)× ↪→ k(y)×.
• For x ∈ X∞, and y ∈ Y∞ with f(y) = x, the inclusion map
k(X)x ↪→ k(Y )y gives ik(Y )y/k(X)x

: K2(k(X)x)→ K2(k(Y )y).
These maps give a canonical homomorphism⊕

x∈X0

k(x)× ⊕
⊕
x∈X∞

K2(k(X)x) −→
⊕
y∈Y0

k(y)× ⊕
⊕
y∈Y∞

K2(k(Y )y).

Since the homomorphism K2(k(X)) → K2(k(Y )) induced from k(X) ↪→
k(Y ) is compatible with above homomorphisms, we obtain iY/X .

Definition 3.7. We define the norm map NY/X := f∗ : C(Y )→ C(X) as
follows:

• For y ∈ Y0 with x = f(y), we have the norm homomorphism
Nk(y)/k(x) : k(y)× → k(x)×.
• For y ∈ Y∞ with x = f(y), we have the norm map Nk(Y )y/k(X)x

:
K2(k(Y )y)→ K2(k(X)x).
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These maps give a canonical homomorphism⊕
y∈Y0

k(y)× ⊕
⊕
y∈Y∞

K2(k(Y )y) −→
⊕
x∈X0

k(x)× ⊕
⊕
x∈X∞

K2(k(X)x).

Since the norm Nk(Y )/k(X) : K2(k(Y )) → K2(k(X)) is compatible with
above norms, we obtain NY/X .

Lemma 3.8. We have NY/X ◦ iY/X = [k(Y ) : k(X)] · idC(X), where idC(X)
is the identity map of C(X).

Proof. The projection formula of the Milnor K-groups (e.g. [25, §14]) gives
Nk(Y )y/k(X)x

◦ ik(Y )y/k(X)x
= [k(Y )y : k(X)x] · idK2(k(X)x) .

The assertion follows from the equality

[k(Y ) : k(X)] =
∑

y∈f−1(x)

[k(Y )y : k(X)x]

for a closed point x ∈ X0 ([31, Chap. I, §4, Prop. 10]). �

From the construction of ρX and the properties of ρKx for each x ∈ X0
given in Proposition 2.2, we obtain the following commutative diagrams:

(3.7)
C(X) ρX // πab

1 (X) C(X) ρX //

iY/X

��

πab
1 (X)

ψ
��

and

C(Y ) ρY //

NY/X

OO

πab
1 (Y )

ϕ

OO

C(Y ) ρY // πab
1 (Y )

where ϕ is the induced homomorphism of the fundamental groups from f
and ψ is given by the transfer map.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using the following notation:
• k: a local field of char(k) = p > 0, and
• X ⊂ X: an open curve over k in the sense of Definition 3.1.

Unramified class field theory. We recall the class field theory for the
projective smooth curve X following [29] and [34]. Note that the idèle class
groups C(X) and C(X)0 are denoted by SK1(X) and V (X) respectively
in op. cit.

Theorem 4.1 ([29, Chap. II, Thm. 2.6, 5.1, Prop. 3.5, and Thm. 4.1], [34,
Thm. 5.1]). For the reciprocity map ρX : C(X)→ πab

1 (X), we have:
(1) Cokertop(ρX) ' Ẑr(X), where r(X) is the rank of X (cf. Section 1),
(2) Ker(ρX) and Ker(ρ0

X
) are the maximal divisible subgroups of C(X)

and C(X)0 respectively,
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(3) # Im(ρ0
X

) <∞, and Coker(ρ0
X

) ' Ẑr(X).

Theorem 4.1 gives the structure of the fundamental group πab
1 (X)0 as in

the following short exact sequence:

(4.1) 0 −→ πab
1 (X)0

tor = Im(ρ0
X

) −→ πab
1 (X)0 −→ Ẑr(X) −→ 0,

where πab
1 (X)0

tor is the torsion part of πab
1 (X)0 which is finite.

Tame fundamental groups. The goal of this paragraph is to deter-
mine the structure of the abelian tame fundamental group πt,ab

1 (X) =
πab

1 (X,X∞) (cf. (3.4)) as in (4.1).

Theorem 4.2. Cokertop(ρX) ' Ẑr(X), where r(X) is the rank of X.

Proof. For any x ∈ X∞ = X \X, put Y := Spec(O∧
X,x

), where O∧
X,x

is the
completion of the local ring OX,x. The localization sequence of the étale
cohomology groups on i : x ↪→ Y ([9, Prop. 5.6.12]) gives an exact sequence

0 −→ H1(Y,Q/Z) −→ H1(Spec(k(X)x),Q/Z)
−→ H2

x(Y,Q/Z) −→ H2(Y,Q/Z).
In terms of the Galois cohomology groups ([9, Prop. 5.7.8]), we have

Hn(Y,Q/Z) '−→
i∗

Hn(x,Q/Z) ' Hn
Gal(k(x),Q/Z)

(here, the first isomorphism follows from [12, Thm. 0.1]) and
Hn(Spec(k(X)x),Q/Z) ' Hn

Gal(k(X)x,Q/Z).
By the Tate duality theorem for local fields ([27, Thm. 7.2.6]) for prime to
the p-part and the dimension reason ([27, Prop. 6.5.10]) for the p-part, we
have
(4.2) H2

Gal(k(x),Q/Z) = 0.
The excision theorem induces an isomorphism H2

x(Y,Q/Z) ' H2
x(X,Q/Z)

(cf. [9, Prop. 5.6.12]). We also have H1
Gal(k(X)x,Q/Z) ' H1(k(X)x)

(cf. (2.1)). Thus, we obtain the commutative diagram below:

(4.3)

0 // H1(k(x))

' ρ∨
k(x)
��

// H1(k(X)x)

ρ∨
k(X)x

'
��

// H2
x(X,Q/Z) //

φx

��

0

0 // (k(x)×)∨
∂∨x // K2(k(X)x)∨ // U0K2(k(X)x)∨,

where ρk(x) and ρk(X)x
are the reciprocity maps of k(x) and k(X)x respec-

tively (Theorem 2.3). Here, the bottom sequence is exact.
Recall that there exist a canonical isomorphism

(4.4) H1(X,Z/m) ' (πab
1 (X)/m)∨
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for each m ∈ Z≥1, and

(4.5) H1(X,Q/Z) ' πab
1 (X)∨

([4, Exp. 1, §2.2.1], or [9, Prop. 5.7.20]). Consider the following commutative
diagram:

(4.6)

0 // H1(X,Q/Z)

ρ∨
X

��

// H1(X,Q/Z)

ρ∨X

��

//
⊕
x∈X∞

H2
x(X,Q/Z)

⊕φx��
0 // C(X)∨ // C(X)∨ i //

⊕
x∈X∞

U0K2(k(X)x)∨,

where the map i is induced from the composition

U0K2(k(X)x) ↪−→ K2(k(X)x) −→ C(X)

for each x ∈ X∞. Here, the upper horizontal sequence is the localization
sequence associated to X∞ ↪→ X. The diagram (4.6) gives Ker(ρ∨

X
) '

Ker(ρ∨X). By Theorem 4.1(1), we obtain

Ẑr(X) ' Cokertop(ρX) ' Ker(ρ∨
X

)∨ ' Ker(ρ∨X)∨ ' Cokertop(ρX).

The assertion follows from this. �

For any effective Weil divisor D on X whose support |D| ⊂ X∞, we have
canonical surjective homomorphisms

πab
1 (X) −→−→ πab

1 (X,D) −→−→ πab
1 (X)

from the very definition of πab
1 (X,D) (Definition 3.4). The above Theo-

rem 4.2 and Theorem 4.1(1) imply also

(4.7) Cokertop(ρX,D) := πab
1 (X,D)/Im(ρX,D) ' Ẑr(X).

Lemma 4.3. For the map ρt,0
X : Ct(X)0 → πt,ab

1 (X)0 (defined in (3.5)), we
have # Im(ρt,0

X ) <∞.

Proof. For each x ∈ X∞, let Ik(X)x
= I0

k(X)x
be the inertia subgroup of

Gab
k(X)x

, that is, the kernel of the restriction Gab
k(X)x

→ Gab
k(x). Theorem 2.3

and Proposition 2.5 imply that ρk(X)x
induces

U0K2(k(X)x)/U1K2(k(X)x)→ I0
k(X)x

/I1
k(X)x

.
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This gives the following commutative diagram with exact rows:⊕
x∈X∞

U0K2(k(X)x)/U1K2(k(X)x) //

��

Ct(X)0 //

ρt,0
X

��

C(X)0

ρ0
X

��

// 0

⊕
x∈X∞

I0
k(X)x

/I1
k(X)x

// πt,ab
1 (X)0 ϕ //// πab

1 (X)0 // 0,

where ϕ is the induced homomorphism from the open immersion X ↪→ X.
For each x ∈ X∞, we have

• ∂x : K2(k(X)x)/U0K2(k(X)x) '→ k(x)× (by U0K2(k(X)x) =
Ker(∂x)), and
• K2(k(X)x)/U1K2(k(X)x) ' K2(k(x)) ⊕ k(x)× (cf. [7, Chap. IX,
Prop. 2.2]).

These isomorphisms give U0K2(k(X)x)/U1K2(k(X)x) ' K2(k(x)). It is
known that K2(k(x)) is the sum of a finite group and a divisible subgroup
([7, Chap. IX, Thm. 4.3]). By Theorem 2.3, ρ∨k(X)x

induces an injective ho-
momorphism (I0

k(X)x
/I1
k(X)x

)∨ ↪→ (U0K2(k(X)x)/U1K2(k(X)x))∨. There-
fore, the quotient I0

k(X)x
/I1
k(X)x

is finite and so is Ker(ϕ). The assertion
# Im(ρt,0

X ) <∞ follows from # Im(ρ0
X

) <∞ (Theorem 4.1(3)). �

From Lemma 4.3 and (4.7), we have a short exact sequence

(4.8) 0 −→ πt,ab
1 (X)0

tor = Im(ρt,0
X ) −→ πt,ab

1 (X)0 −→ Ẑr(X) −→ 0.

Open curves. The rest of this section is devoted to show Theorem 1.1(2)
(=Theorem 4.6 below). Recall N′ = {m ∈ Z≥1 |m is prime to p} and the
reciprocity map ρX induces ρX,m : C(X)/m → πab

1 (X)/m for each m ∈
Z≥1.
Lemma 4.4. For any m ∈ N′, ρX,m : C(X)/m→ πab

1 (X)/m is injective.
Proof. For any m ∈ N′, we have H3

c (X,Z/m(2)) = H3(X, j!Z/m(2)) ([9,
§7.4]), where Z/m(n) = µ⊗nm and j : X ↪→ X is the open immersion. We
define a commutative diagram:

K2(k(X))/m //

h

��

⊕
x∈X0

k(x)×/m⊕
⊕
x∈X∞

K2(k(X)x)/m //

��

C(X)/m //

��

0

H2
Gal(k(X),Z/m(2)) //

⊕
x∈X0

H3
x(X, j!Z/m(2)) // H3(X, j!Z/m(2)) .

Here, the horizontal sequences are exact, and the left vertical map h is
bijective by the Merkurjev–Suslin theorem [21]. The middle vertical map is
also bijective from the following facts:
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• For x ∈ X0, the Kummer theory gives

K1(k(x))/m '−→ H1
Gal(k(x),Z/m(1)) ' H3

x(X, j!Z/m(2)),
where the latter isomorphism follows from the excision theorem
([9, Prop. 5.6.12]): H3

x(X, j!Z/m(2)) ' H3
x(X,Z/m(2)), the purity

theorem ([9, Cor. 8.5.6]) for the closed immersion i : x ↪→ X:

Rti!Z/m(2) =
{

0 if t 6= 2,
i∗Z/m(1) if t = 2,

and the Leray spectral sequence ([9, Prop. 5.6.11]):

Es,t2 = Hs(x,Rti!Z/m(2))⇒ Hs+t
x (X,Z/m(2)).

• For x ∈ X∞, the Merkurjev–Suslin theorem again gives

K2(k(X)x)/m '−→ H2
Gal(k(X)x,Z/m(2)) ' H3

x(X, j!Z/m(2)).
Here, the latter isomorphism is given by the excision theorem (see [22,
Chap. III, Cor. 1.28]):

H3
x(X, j!Z/m(2)) ' H3

x(Spec(Oh
X,x

), j!Z/m(2)),

and [23, Chap. II, Prop. 1.1]:

H3
x(Spec(Oh

X,x
), j!Z/m(2)) ' H2

Gal(k(X)hx,Z/m(2))

' H2
Gal(k(X)x,Z/m(2)),

where Oh
X,x

is the henselization of the local ring OX,x, and k(X)hx is its frac-
tion field. Thus, the induced homomorphism C(X)/m→ H3

c (X,Z/m(2)) is
injective from the above diagram. By the duality theorem ([30])
through (πab

1 (X)/m)∨ ' H1(X,Z/m) (cf. (4.4)), we have πab
1 (X)/m '

H3
c (X,Z/m(2)) so that ρX,m : C(X)/m→ πab

1 (X)/m is injective. �

Before proving Theorem 1.1(2) (=Theorem 4.6 below), we prepare some
notation (following [8, §3]) and quote a lemma from [14]. For a set of primes
L with p 6∈ L, define

• N(L) := {m ∈ N′ | the prime divisors of m are in L} as a sub
monoid of N′.

For an abelian group G, the natural surjective homomorphisms G→ G/m
for m ∈ N(L) induces a homomorphism
(4.9) φG,L : G −→ GL := lim←−

m∈N(L)
G/m.

Lemma 4.5 ([14, Lem. 7.7]). Let A be an abelian group, {Bm}m∈N(L) a pro-
jective system of abelian groups, and a morphism {ϕm : A/m→ Bm}m∈N(L)
of the projective systems. Put BL := lim←−m∈N(L)Bm. If we assume that
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(1) ϕm is injective for all m ∈ N(L), and
(2) there exists N ∈ N(L) such that N · (BL)tor = 0,

then Ker(φA,L : A→ AL) is l-divisible for any prime l ∈ L.

Theorem 4.6. Let k be a local field of char(k) = p, and X ⊂ X an open
curve over k. Then Ker(ρX) is the maximal l-divisible subgroup of C(X)
for all prime number l 6= p.

Proof. Since any profinite group does not contain non-trivial divisible el-
ements, it is enough to show that, for any set of primes L with p 6∈ L,
Ker(ρX) is l-divisible for all l ∈ L. From Lemma 4.4, we have an injec-
tive homomorphism ρX,L := lim←−m∈N(L) ρX,m : C(X)L ↪→ πab

1 (X)L which
commutes with ρX as in the following commutative diagram:

C(X) ρX //

ψ

��

πab
1 (X)

φ
��

C(X)L �
� ρX,L // πab

1 (X)L,

where the vertical maps are the natural one ψ = φC(X),L and φ = φπab
1 (X),L

(defined in (4.9)). This diagram gives an exact sequence

(4.10) 0 −→ Ker(ρX) −→ Ker(ψ) ρX−→ Ker(φ).

Claim. For any prime number l ∈ L, we have
(1) Ker(ψ) is l-divisible, and
(2) Ker(φ) is l-torsion free, that is, if we have lx = 0 with x ∈ Ker(φ)

then x = 0.

Proof. (1) Put A := C(X), Bm := πab
1 (X)/m and ϕm := ρX,m : A/m →

Bm. Using Lemma 4.5, we show that Ker(ψ) = Ker(φA,L) is l-divisible for
any l ∈ L. By Lemma 4.4, ϕm = ρX,m is injective for all m ∈ N(L): the
condition (1) in Lemma 4.5 holds.

The tame fundamental group πt,ab
1 (X) is defined by the wild inertia

subgroups I1
k(X)x

for x ∈ X∞ in Definition 3.4 and (3.4). This group I1
k(X)x

is pro-p so that we have Bm = πab
1 (X)/m '→ πt,ab

1 (X)/m for eachm ∈ N(L).
Taking the inverse limit,

(4.11) BL = πab
1 (X)L

' // πt,ab
1 (X)L.

By local class field theory (of k) and the structure of the base field k
(e.g. [26, Prop. 5.7(ii)]), (Gab

k )L is (topologically) finitely generated. For
(πt,ab

1 (X)0)L is finitely generated (4.8), so is BL by (4.11). Using the finite-
ness of the torsion part (BL)tor, there exists N ∈ N(L) such that N ·
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(BL)tor = 0: the condition (2) in Lemma 4.5 holds. The claim (1) follows
from Lemma 4.5.

(2) Putting φt = φ
πt,ab

1 (X),L (cf. (4.9)), the commutative diagram

πab
1 (X)

φ

��

// // πt,ab
1 (X)

φt

��

πab
1 (X)L

' // πt,ab
1 (X)L

induces a short exact sequence⊕
x∈X∞

I1
k(X)x

−→ Ker(φ) −→ Ker(φt) −→ 0.

Recall that the wild inertia subgroup I1
k(X)x

is pro-p, in particular, it has
no l-torsion quotient. It is enough to show that Ker(φt) is l-torsion free.
We further consider the commutative diagram below with exact rows:

0 // πt,ab
1 (X)0

φt,0

��

// πt,ab
1 (X)

φt

��

// Gab
k

φk

��

// 0

0 // (πt,ab
1 (X)0)L // πt,ab

1 (X)L // (Gab
k )L,

where φt,0 := φ
πt,ab

1 (X)0,L and φk := φGab
k
,L (cf. (4.9)). Since πt,ab

1 (X)0 is
finitely generated (4.8), Ker(φt,0) is l-torsion free. By local class field theory,
Ker(φk) is also l-torsion free. Therefore, the same holds on Ker(φt). �

By the exact sequence (4.10) and the claim above, Ker(ρX) is l-divisible
for any prime l ∈ L as required. �

Restricted Ramification. In closing this section, we derive the class field
theory with modulus from Theorem 4.6 above.

Theorem 4.7. Let D ≥ 0 be an effective Weil divisor on X with support
|D| ⊂ X∞. For ρX,D : C(X,D)→ πab

1 (X,D), we have:
(1) Ker(ρX,D) is the maximal l-divisible subgroup of C(X,D) for any

prime l 6= p, and
(2) Cokertop(ρX,D) ' Ẑr(X).

Proof. The assertion (2) is already given in (4.7). Furthermore, the surjec-
tive homomorphism C(X) � C(X,D) gives a homomorphism Ker(ρX) �
Ker(ρX,D) which is also surjective. From Theorem 4.6, Ker(ρX,D) is l-
divisible for a prime l 6= p. Since profinite groups contain no non-trivial
divisible elements, the assertion (1) follows. �



518 Toshiro Hiranouchi

5. Proof of Theorem 1.2

We keep the notation of Section 4.

Unramified class field theory.

Corollary 5.1. The induced homomorphism ρ∨
X

: H1(X,Q/Z) → C(X)∨
from the reciprocity map ρX satisfies the following:

(1) Ker(ρ∨
X

) ' (Q/Z)r(X), and
(2) ρ∨

X
is surjective.

Proof. The assertion (1) follows from Theorem 4.1(1). By Theorem 4.1(2),
ρ0
X

defined in (3.2) induces an injection ρ0
X,m

: C(X)0/m ↪→ πab
1 (X)0/m.

Since the quotient C(X)0/m is finite (Theorem 4.1(3)), we obtain the sur-
jective homomorphism
(5.1) (ρ0

X,m
)∨ : (πab

1 (X)0/m)∨ −→−→ (C(X)0/m)∨

on the dual groups for any m ∈ Z≥1. Now, we show that

(ρ0
X

)∨ : (πab
1 (X)0)∨ −→ (C(X)0)∨

is surjective. Take a character ϕ ∈ (C(X)0)∨. By the very definition of
(C(X)0)∨, the character ϕ has finite order (cf. Notation). Hence, there ex-
ists m ∈ Z≥1 and ϕm ∈ (C(X)0/m)∨ such that ϕ is the image of ϕm by the
natural map (C(X)0/m)∨ → (C(X)0)∨. Since (ρ0

X,m
)∨ is surjective (5.1),

there exists χm ∈ (πab
1 (X)0/m)∨ such that (ρ0

X,m
)∨(χm) = ϕm. From the

commutative diagram

(πab
1 (X)0/m)∨

(ρ0
X,m

)∨
����

// (πab
1 (X)0)∨

(ρ0
X

)∨
��

(C(X)0/m)∨ // (C(X)0)∨,

the image χ of χm by (πab
1 (X)0/m)∨ → (πab

1 (X)0)∨ gives ϕ = (ρ0
X

)∨(χ).
Hence, (ρ0

X
)∨ is surjective.

On the other hand, the commutative diagram (3.2) and the Hochschild–
Serre spectral sequence Hs

Gal(k,Ht(Xk,Q/Z))⇒ Hs+t(X,Q/Z) associated
with the projection Xk → X (cf. [3, Exp. VIII, Cor. 8.5]) give the following
commutative diagram with exact rows:

(5.2)

H1
Gal(k,Q/Z)

ρ∨k'
��

� � // H1(X,Q/Z)

ρ∨
X
��

// H1(Xk,Q/Z)Gk

��

// H2
Gal(k,Q/Z)

(k×)∨
N∨

X // C(X)∨ // (C(X)0)∨ .
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Here, for a Gk-module M , we denote by MGk the Gk-invariant submodule
of M and H2

Gal(k,Q/Z) = 0 as in (4.2). By local class field theory, the left
vertical map ρ∨k in (5.2) is bijective. Because of H1

Gal(k,Q/Z) ' (Gab
k )∨,

and H1(X,Q/Z) ' πab
1 (X)∨, we obtain H1(Xk,Q/Z)Gk ' (πab

1 (X)0)∨.
The right vertical map in the diagram (5.2) coincides with (ρ0

X
)∨ and is

surjective by (5.1). Therefore, ρ∨
X

is surjective. �

Corollary 5.2. We assume that we have r(X) = 0. Then ρ∨
X,m

:
H1(X,Z/m)→ (C(X)/m)∨ is bijective for any m ∈ Z≥1.

Proof. For each m ∈ Z≥1, we have the following commutative diagram:

H1(X,Z/m)
ρ∨

X,m
��

� � q
∨
// H1(X,Q/Z)

ρ∨
X'
��

(C(X)/m)∨ �
� q∨ // C(X)∨,

where the horizontal maps q∨ are induced from the quotient maps q :
πab

1 (X) � πab
1 (X)/m and q : C(X) � C(X)/m. From Corollary 5.1, ρ∨

X,m

is injective. To show that ρ∨
X,m

is surjective, take any ϕ ∈ (C(X)/m)∨. We
denote by ϕ̃ := q∗(ϕ) its image in C(X)∨. As ρ∨

X
is surjective, there exists

χ̃ ∈ H1(X,Q/Z) such that ρ∨
X

(χ̃) = ϕ̃. Since ρ∨
X

is injective, ρ∨
X

(mχ̃) =
mϕ̃ = 0 implies mχ̃ = 0. The character χ̃ : πab

1 (X)→ Q/Z factors through
q : πab

1 (X) � πab
1 (X)/m and this induces χ ∈ H1(X,Z/m). By diagram

chasing, we obtain ρ∨
X,m

(χ) = ϕ and the assertion follows. �

Open curves. Recall that X ⊂ X is a non-empty open subscheme and ρX
induces ρ∨X : H1(X,Q/Z)→ C(X)∨ and ρ∨X,m :H1(X,Z/m)→ (C(X)/m)∨
for each m ∈ Z≥1.

Proposition 5.3. Assume r(X) = 0. Then

ρ∨X,m : H1(X,Z/m)→ (C(X)/m)∨

is bijective for any m ∈ Z≥1.

Proof. From the assumption r(X) = 0 and Theorem 4.2, ρX and hence
ρX,m has dense image. On the dual groups, ρ∨X and ρ∨X,m for any m ∈ Z≥1
are injective. In the following, we show that ρ∨X,m is surjective.

Prime to p-part. For m ∈ N′, we have an isomorphism πab
1 (X)/m '

πt,ab
1 (X)/m of finite groups as noted in the proof of Theorem 4.6 (cf. (4.11)).

Since ρX,m is an injective homomorphism of finite groups (Lemma 4.4), the
dual ρ∨X,m becomes surjective.
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p-part. Instead of using Z/pn with Q/Z in (4.3), for each x ∈ X∞, we have
the following commutative diagram with exact rows:

0 // H1
Gal(k(x),Z/pn)

' ρ∨
k(x),pn

��

// H1
Gal(k(X)x,Z/pn)

ρ∨
k(X)x,pn'
��

// H2
x(X,Z/pn) //

φx,pn

��

0

0 // (k(x)×/pn)∨ // (K2(k(X)x)/pn)∨ // (U0K2(k(X)x)/pn)∨,

where the middle vertical map is bijective by (2.3). As in (4.6), the local-
ization sequence and (2.3) give the following diagram with exact rows:

H1(X,Z/pn)

ρ∨
X,pn'
��

� � // H1(X,Z/pn)

ρ∨
X,pn

��

//
⊕
x∈X∞

H2
x(X,Z/pn)
� _
φ��

j //H2(X,Z/pn)

(C(X)/pn)∨ �
� // (C(X)/pn)∨ i //

⊕
x∈X∞

(U0K2(k(X)x)/pn)∨,

where φ := ⊕φx,pn . From Corollary 5.2, ρ∨
X,pn is bijective.

Claim. Im(i) ⊂ Im(φ).

Proof. The map i can be written as the composition

(C(X)/pn)∨ −→
⊕
x∈X∞

(K2(k(X)x)/pn)∨ ⊕ix−→
⊕
x∈X∞

(U0K2(k(X)x)/pn)∨,

where the first map is given by the natural map K2(k(X)x) → C(X) for
each x ∈ X∞ and the latter which is denoted by ⊕ix is induced from the
inclusion U0K2(k(X)x) ↪→ K2(k(X)x) for each x ∈ X∞. For each x ∈ X∞,
as in (4.3), there exists a commutative diagram

H1
Gal(k(X)x,Z/pn)

ρ∨
k(X)x,pn '

��

// H2
x(X,Z/pn)

φx,pn

��
(K2(k(X)x)/pn)∨ ix // (U0K2(k(X)x)/pn)∨.

Here, the left vertical map is bijective from (2.3) and the claim follows. �

To show that ρ∨X,pn is surjective, take ϕ ∈ (C(X)/pn)∨. From the above
Claim, there exists γ ∈

⊕
xH

2
x(X,Z/pn) such that i(ϕ) = φ(γ). From

H2(X ⊗k k,Z/pn) = 0 ([3, Exp. X, Cor. 5.2]), there exists a finite Galois
extension k′ of k such that the image of j(γ) by the homomorphism f

∗ :
H2(X,Z/pn)→ H2(X ′,Z/pn) becomes zero, where f : X ′ := X⊗k k′ → X
is the projection. Put also X ′ := X⊗k k′ and let f : X ′ → X be the induced
morphism. In this setting, we have the norm homomorphism N := NX′/X :
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C(X ′)→ C(X) defined in Definition 3.7. By (3.7), this makes the following
diagram commutative:

H1(X,Z/pn)

ρ∨
X,pn

��

f∗ // H1(X ′,Z/pn)
ρ∨

X′,pn

��
(C(X)/pn)∨

N∨
pn
// (C(X ′)/pn)∨,

where N∨pn is the induced homomorphism by N = NX′/X . Thus, there exists
χ′ ∈ H1(X ′,Z/pn) such that ϕ′ := N∨pn(ϕ) = ρ∨X′,pn(χ′) in (C(X ′)/pn)∨ by
the diagram chase. It is left to show that ϕ comes from H1(X,Z/pn).

Let H be the p-Sylow subgroup of G := Gal(k′/k) and kH the fixed field
of H in k′. Putting XH := X ⊗k kH , the diagram

H1(XH ,Z/pn)
ρ∨

XH ,pn

��

// H1(X,Z/pn)

ρ∨
X,pn

��
(C(X)/pn)∨

[kH :k]

99

N∨
XH /X,pn

// (C(XH)/pn)∨
i∨
XH /X,pn

// (C(X)/pn)∨

is commutative by (3.7). From Lemma 3.8, we have NXH/X ◦ iXH/X = [kH :
k] idC(X). Since the order of ϕ is a power of p, using the above diagram,
we may assume kH = k and G = Gal(k′/k) is a p-group. Take a field
extensions k = k0 ⊂ k1 ⊂ · · · ⊂ ks = k′ such that ki+1/ki is a cyclic
extension of degree p. By induction on i, we may assume that the Galois
group G is a cyclic group of the order p. We denote by ϕ̃ ∈ C(X)∨ and
ϕ̃′ ∈ C(X ′)∨ the characters induced from ϕ and ϕ′ respectively. We also
denote by χ̃′ ∈ H1(X ′,Q/Z) the lift of χ′. From the equality ϕ′ = N∨pn(ϕ) =
ρ∨X′,pn(χ′), we have ϕ̃′ = N∨(ϕ̃) = ρ∨X′(χ̃′) in C(X ′)∨. We consider the
following commutative diagram:

(5.3)

0 // G∨

ψ

��

// H1(X,Q/Z)� _

ρ∨X
��

f∗ // H1(X ′,Q/Z)G� _

ρ∨
X′
��

// 0

0 // Ker(N∨) // C(X)∨ N∨ // (C(X ′)∨)G.

The upper horizontal sequence is exact which comes from the Hochschild–
Serre spectral sequence Hs

Gal(G,Ht(X ′,Q/Z))⇒ Hs+t(X,Q/Z) associated
with f : X ′ → X (cf. [3, Exp. VIII, Cor. 8.5]) and H2

Gal(G,Q/Z) = 0 ([31,
Chap. VIII, §5]). Since ϕ̃′ = N∨(ϕ̃) is fixed by G and ρ∨X′ is injective, χ̃′ is
also fixed by G. The left vertical map ψ in (5.3) is injective. Note that from
the assumption r(X) = 0, there are no completely split coverings of X (cf.
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Section 1). The lemma below (Lemma 5.4) implies that ψ is bijective. From
the diagram chase, one can find χ̃ ∈ H1(X,Z/pn) such that ρ∨X(χ̃) = ϕ̃.
For ρ∨X(pnχ̃) = pnϕ̃ = 0 and ρ∨X is injective, we obtain pnχ̃ = 0. Therefore,
χ̃ induces χ ∈ H1(X,Z/pn). This satisfies ρ∨X,pn(χ) = ϕ and thus ρ∨X,pn is
surjective. �

Lemma 5.4. Let k′/k be a Galois extension with [k′ : k] = p. We assume
that the base change X ′ := X ⊗k k′ → X is not a completely split covering.
Then, the following sequence is exact:

0 // G∨ // C(X)∨ N∨// C(X ′)∨,

where G = Gal(k′/k) and N = NX′/X .

Proof. A character ϕ ∈ Ker(N∨) induces an element ϕx of K2(k(X)x)∨ for
each x ∈ X∞. Since ϕx is in the kernel of N∨k′k(X)x/k(X)x

: K2(k(X)x)∨ →
K2(k′k(X)x)∨, the corresponding character χx := (ρ∨k(X)x

)−1(ϕx) ∈
H1(k(X)x) (Theorem 2.3(1)) is annihilated by the unramified extension
k′k(X)x/k(X)x. In particular, χx is unramified so that ϕx annihilates
U0K2(k(X)x) (Theorem 2.3(2)). Thus, the assertion is reduced to the case
of X = X, that is, the exactness of

0 −→ G∨ −→ C(X)∨
N∨

X
′
/X−→ C(X ′)∨,

where X ′ = X ⊗k k′. This follows from Corollary 5.1. �

Theorem 5.5. Suppose that we have r(X) = 0. Then, the dual of the
reciprocity homomorphism ρ∨X : πab

1 (X)∨ → C(X)∨ is bijective.

Proof. We use πab
1 (X)∨ ' H1(X,Q/Z) given in (4.5). The injectivity of

ρ∨X follows from Theorem 4.2. To show that ρ∨X is surjective, take any ϕ ∈
C(X)∨. Since ϕ has finite order (cf. Notation), ϕ defines ϕm ∈ (C(X)/m)∨
for some m ∈ Z≥1. Consider the commutative diagram

H1(X,Z/m)

ρ∨X,m '
��

� � // H1(X,Q/Z)

ρ∨X
��

(C(X)/m)∨ �
� // C(X)∨,

where the horizontal maps are injective (as in the proof of Corollary 5.2)
and the left vertical map is bijective (Proposition 5.3). There exists χ ∈
H1(X,Q/Z) such that ρ∨X(χ) = ϕ and hence ρ∨X is surjective. �
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