Counting points on the Fricke–Macbeath curve over finite fields
Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 1, pp. 117-129.

La courbe de Fricke-Macbeath est une courbe projective lisse de genre 7 avec groupe d’automorphismes PSL 2 (𝔽 8 ). Nous rappelons deux modèles de cette courbe (introduits respectivement par Maxim Hendriks et Bradley Brock) définis sur , et nous établissons un isomorphisme explicite, défini sur (-7), entre ces deux modèles. De plus, nous décomposons à isogénie sur près la jacobienne de l’un des modèles. Comme une conséquence nous obtenons une formule simple pour le nombre de points sur 𝔽 q de (la réduction de) ce modèle, en termes de la courbe elliptique d’équation y 2 =x 3 +x 2 -114x-127. Enfin, des tordus de cette courbe par des éléments de PSL 2 (𝔽 8 ) sur des corps finis sont décrits. La courbe donne un certain nombre de nouveaux records maintenus par manYPoints de courbes de genre 7 avec beaucoup de points rationnels sur des corps finis.

The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL 2 (𝔽 8 ). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over , and we establish an explicit isomorphism defined over (-7) between these models. Moreover, we decompose up to isogeny over the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 𝔽 q on (the reduction of) this model, in terms of the elliptic curve with equation y 2 =x 3 +x 2 -114x-127. Moreover, twists by elements of PSL 2 (𝔽 8 ) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1019
Classification : 11N56,  14G42
Mots clés : Hurwitz curve, automorphism group, jacobian, point counting
@article{JTNB_2018__30_1_117_0,
     author = {Jaap Top and Carlo Verschoor},
     title = {Counting points on the {Fricke{\textendash}Macbeath} curve over finite fields},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {117--129},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {1},
     year = {2018},
     doi = {10.5802/jtnb.1019},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1019/}
}
Jaap Top; Carlo Verschoor. Counting points on the Fricke–Macbeath curve over finite fields. Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 1, pp. 117-129. doi : 10.5802/jtnb.1019. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1019/

[1] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | Article

[2] W. L. Edge A canonical curve of genus 7, Proc. Lond. Math. Soc., Volume 17 (1967), pp. 207-225 | Article

[3] Noam D. Elkies Shimura curve computations, Algorithmic number theory. 3rd international symposium (Lect. Notes Comput. Sci.) Volume 1423 (1998), pp. 1-47

[4] Karl Emanuel Robert Fricke Ueber eine einfache Gruppe von 504 Operationen, Math. Ann., Volume 52 (1899), pp. 321-339 | Article

[5] Gerard van der Geer; Everett W. Howe; Kristin E. Lauter; Christophe Ritzenthaler Tables of Curves with Many Points, 2009 (http://manypoints.org)

[6] Ernesto Girondo; David Torres-Teigell; Jürgen Wolfart Fields of definition of uniform dessins on quasiplatonic surfaces, Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces (Contemporary Mathematics) Volume 629, American Mathematical Society, 2015, pp. 155-170

[7] Maxim Hendriks Platonic Maps of Low Genus (2013) (Ph. D. Thesis)

[8] Rubén A. Hidalgo Edmonds maps on Fricke-Macbeath curve, Ars Math. Contemp., Volume 8 (2015) no. 2, pp. 275-289

[9] Everett W. Howe Curves of medium genus with many points (2016) (https://arxiv.org/abs/1609.01838v2)

[10] Felix Klein Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Clebsch Ann., Volume XIV (1879), pp. 428-471

[11] A. Murray Macbeath On a curve of genus 7, Proc. Lond. Math. Soc., Volume 15 (1965), pp. 527-542 | Article

[12] Stephen Meagher; Jaap Top Twists of genus three curves over finite fields, Finite Fields Appl., Volume 16 (2010) no. 5, pp. 347-368 | Article

[13] Stephan Sémirat 2-extensions with many points (2000) (http://arxiv.org/abs/math/0011067v1)

[14] Jean-Pierre Serre Appendix to “Square-root parametrization of plane curves”, Algebraic geometry and its applications, Springer, 1994, pp. 85-88

[15] Goro Shimura Construction of class fields and zeta functions of algebraic curves, Ann. Math., Volume 85 (1967), pp. 58-159 | Article

[16] Muhammad Afzal Soomro Algebraic Curves over Finite Fields (2013) (Ph. D. Thesis)

[17] Carlo Verschoor Twists of the Klein Curve and of the Fricke Macbeath Curve (2015) (Masters thesis)

[18] Klaus Wohlfahrt Macbeath’s Curve and the Modular Group, Glasg. Math. J., Volume 27 (1985), pp. 239-247 (corrigendum in ibid., 28 (1986), p. 241) | Article