Cyclic, ramified extensions of degree of local fields with residue characteristic are fairly well understood. They are defined by an Artin–Schreier equation, unless and for some prime element . Moreover, through the work of Bertrandias–Ferton () and Aiba (), much is known about the Galois module structure of the ideals in such extensions: the structure of each ideal as a module over its associated order where . The purpose of this paper is to extend these results to separable, ramified extensions of degree that are not Galois.
Les extensions cycliques ramifiées de degré d’un corps local dont la caractéristique résiduelle est sont plutôt bien comprises. Elles sont définies par une équation d’Artin–Schreier sauf lorsque et pour une certaine uniformisante . De plus, depuis les travaux de Bertrandias–Ferton () puis Aiba (), plusieurs résultats sont connus sur la structure galoisienne des idéaux de telles extensions : on sait par exemple décrire la structure de chaque idéal comme module sur son ordre associé , où . Le but de cet article est d’étendre ces résultats aux extensions séparables et ramifiées de degré qui ne sont pas galoisiennes.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1014
Mots-clés : Artin–Schreier equation, Galois module structure
G. Griffith Elder 1
@article{JTNB_2018__30_1_19_0, author = {G. Griffith Elder}, title = {Ramified extensions of degree $p$ and their {Hopf{\textendash}Galois} module structure}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {19--40}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {1}, year = {2018}, doi = {10.5802/jtnb.1014}, zbl = {1432.11169}, mrnumber = {3809707}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1014/} }
TY - JOUR AU - G. Griffith Elder TI - Ramified extensions of degree $p$ and their Hopf–Galois module structure JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 19 EP - 40 VL - 30 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1014/ DO - 10.5802/jtnb.1014 LA - en ID - JTNB_2018__30_1_19_0 ER -
%0 Journal Article %A G. Griffith Elder %T Ramified extensions of degree $p$ and their Hopf–Galois module structure %J Journal de théorie des nombres de Bordeaux %D 2018 %P 19-40 %V 30 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1014/ %R 10.5802/jtnb.1014 %G en %F JTNB_2018__30_1_19_0
G. Griffith Elder. Ramified extensions of degree $p$ and their Hopf–Galois module structure. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 1, pp. 19-40. doi : 10.5802/jtnb.1014. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1014/
[1] Artin-Schreier extensions and Galois module structure, J. Number Theory, Volume 102 (2003) no. 1, pp. 118-124 | DOI | MR | Zbl
[2] Eisenstein equations of degree in a -adic field, J. Fac. Sci. Univ. Tokyo, Sect. I A, Volume 18 (1971), pp. 1-21 | MR | Zbl
[3] Class field theory, Advanced Book Classics, Addison-Wesley Publishing Company, 1990, xxxviii+259 pages | Zbl
[4] Sur l’anneau des entiers d’une extension cyclique de degré premier d’un corps local, C. R. Acad. Sci., Paris, Sér. A, Volume 274 (1972), pp. 1388-1391 | Zbl
[5] Galois structure of ideals in wildly ramified abelian -extensions of a -adic field, and some applications, J. Théor. Nombres Bordx., Volume 9 (1997) no. 1, pp. 201-219 | DOI | MR | Zbl
[6] Scaffolds and generalized integral Galois modules structure (2017) (to appear in Ann. Inst. Fourier, https://arxiv.org/abs/1308.2088v3) | Numdam | Zbl
[7] On the Hopf Galois theory for separable field extensions, Commun. Algebra, Volume 17 (1989) no. 4, pp. 809-825 | DOI | MR | Zbl
[8] Taming wild extensions: Hopf algebras and local Galois module theory, Mathematical Surveys and Monographs, 80, American Mathematical Society, 2000, viii+215 pages | MR | Zbl
[9] Abstract algebra, Wiley International Edition, 2004, xii+932 pages | Zbl
[10] Galois scaffolding in one-dimensional elementary abelian extensions, Proc. Am. Math. Soc., Volume 137 (2009) no. 4, pp. 1193-1203 | DOI | MR | Zbl
[11] Sur les idéaux d’une extension cyclique de degré premier d’un corps local, C. R. Acad. Sci., Paris, Sér. A, Volume 276 (1973), pp. 1483-1486 | MR | Zbl
[12] Local fields and their extensions, Translations of Mathematical Monograph, 121, Translations of Mathematical Monograph, 2002, xi+345 pages | MR | Zbl
[13] Hopf Galois theory for separable field extensions, J. Algebra, Volume 106 (1987) no. 1, pp. 239-258 | DOI | MR | Zbl
[14] On the ramification breaks, Commun. Algebra, Volume 19 (1991) no. 8, pp. 2267-2279 | DOI | MR | Zbl
[15] Artin-Schreier extensions and generalized associated orders, J. Number Theory, Volume 136 (2014), pp. 28-45 | DOI | MR | Zbl
[16] A database of local fields, J. Symb. Comput., Volume 41 (2006) no. 1, pp. 80-97 | DOI | MR | Zbl
[17] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002, xv+914 pages | Zbl
[18] The local Kronecker-Weber theorem, Trans. Am. Math. Soc., Volume 267 (1981), pp. 133-138 | DOI | MR | Zbl
[19] Elementary analytic methods in higher ramification theory, J. Number Theory, Volume 133 (2013) no. 3, pp. 983-999 | DOI | MR | Zbl
[20] A generalization of a lemma of Sullivan, Commun. Algebra, Volume 40 (2012) no. 7, pp. 2301-2308 | DOI | MR | Zbl
[21] Artin-Scheier equations in characteristic zero, Am. J. Math., Volume 78 (1956), pp. 473-485 | DOI | Zbl
[22] Local Galois module structure in characteristic , University of Exeter (UK) (2013) (Ph. D. Thesis) | MR
[23] Local fields., Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages | Zbl
[24] Local Galois module structure in positive characteristic and continued fractions, Arch. Math., Volume 88 (2007) no. 3, pp. 207-219 | DOI | MR | Zbl
[25] -torsion in the class group of curves with too many automorphisms, Arch. Math., Volume 26 (1975), pp. 253-261 | DOI | MR | Zbl
[26] The L-functions and Modular Forms Database, 2016 (http://www.lmfdb.org)
Cited by Sources: