Erdős first conjectured that infinitely often we have
Erdős a conjecturé qu’il existe une infinité de nombres
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1088
Keywords: Function Fields, Euler Totient Function, Primitive Divisors
Patrick Meisner 1

@article{JTNB_2019__31_2_403_0, author = {Patrick Meisner}, title = {On {Incidences} of $\varphi $ and $\sigma $ in the {Function} {Field} {Setting}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {403--415}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1088}, zbl = {07054514}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/} }
TY - JOUR AU - Patrick Meisner TI - On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 403 EP - 415 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/ DO - 10.5802/jtnb.1088 LA - en ID - JTNB_2019__31_2_403_0 ER -
%0 Journal Article %A Patrick Meisner %T On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting %J Journal de théorie des nombres de Bordeaux %D 2019 %P 403-415 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/ %R 10.5802/jtnb.1088 %G en %F JTNB_2019__31_2_403_0
Patrick Meisner. On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 403-415. doi : 10.5802/jtnb.1088. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1088/
[1] The orders of the linear groups, Commun. Pure Appl. Math., Volume 8 (1955), pp. 355-365 | DOI | MR | Zbl
[2] Taltheoretiske undersøgelser, Tidsskrift for mathematik, Volume 4 (1886), pp. 70-80
[3] Hardy–Littlewood tuple conjecture over large finite fields, Int. Math. Res. Not., Volume 2014 (2014) no. 2, pp. 568-575 | DOI | MR | Zbl
[4] On quantitative analogues of the Goldbach and twin prime conjectures over
[5] The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2, Philos. Trans. A, R. Soc. Lond., Volume 373 (2015) no. 2040, 20140311, 14 pages | MR | Zbl
[6] Remarks on number theory II. Some problems on the
[7] Common values of the arithmetic functions
[8] On common values of
[9] On common values of
[10] Zur theorie der Potenzreste, Monatsh. f. Math., Volume 3 (1892), pp. 265-284 | DOI | MR | Zbl
Cité par Sources :