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Journal de Théorie des Nombres
de Bordeaux 31 (2019), 403–415

On Incidences of ϕ and σ in the Function Field
Setting

par Patrick MEISNER

Résumé. Erdős a conjecturé qu’il existe une infinité de nombres n et m tels
que ϕ(n) = σ(m), où ϕ est l’indicatrice d’Euler et σ est la fonction somme de
diviseurs. Cette conjecture a été prouvée en 2010 par Ford, Luca et Pomerance.
De façon analogue, on se demande s’il existe une infinité de polynômes F et
G sur un corps fini Fq tels que ϕ(F ) = σ(G). On trouve que si q 6= 2 ou 3,
c’est vrai seulement dans le cas trivial F = G = 1. De plus, on donne une
caractérisation des solutions dans les cas q = 2 et 3. En particulier, on montre
que si q = 2 ou 3, on a ϕ(F ) = σ(G) pour une infinité de polynômes.

Abstract. Erdős first conjectured that infinitely often we have ϕ(n) = σ(m),
where ϕ is the Euler totient function and σ is the sum of divisors function.
This was proven true by Ford, Luca and Pomerance in 2010. We ask the
analogous question of whether infinitely often we have ϕ(F ) = σ(G) where F
and G are polynomials over some finite field Fq. We find that when q 6= 2 or
3, then this can only trivially happen when F = G = 1. Moreover, we give a
complete characterisation of the solutions in the case q = 2 or 3. In particular,
we show that ϕ(F ) = σ(G) infinitely often when q = 2 or 3.

1. Introduction

1.1. Background. Erdős first conjectured in [6] that there should be in-
finitely many solutions to the equation ϕ(n) = σ(m) where ϕ is the Euler
totient function and σ is the sum of divisors function. This question is in-
teresting in part because it is implied by the infinitude of two set sets of
primes both of which are widely believed to be infinite: twin primes and
Mersenne primes. Indeed, if we have a prime p such that p+ 2 is also prime
then

σ(p) = p+ 1 = ϕ(p+ 2),
while if we have a Mersenne prime 2n − 1, then

σ(2n − 1) = 2n = ϕ(2n+1).
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This conjecture was proved by Ford, Luca and Pomerance in [7]. More-
over, they showed that for some positive α, there are at least
exp((log log x)α) common values less than x of ϕ and σ for large x. Under a
uniform version of the prime k-tuples conjecture, Ford and Pollack [8] were
able to show that the number of common values less than x of ϕ and σ is
greater than x

(log x)1+o(1) , while in [9] they were able to prove unconditional
upper bounds on the number of solutions.

1.2. Function Fields. In this paper, we are interested in the analogous
question about function fields. That is, if F,G ∈ Fq[T ] are polynomials over
the finite field Fq, then we define

ϕ(F ) = #(Fq[T ]/(F ))∗ =
∏
P |F
|P |vP (F )−1(|P | − 1)(1.1)

σ(G) =
∑
D|G
|D|(1.2)

where for any polynomial A ∈ Fq[T ], |A| = qdeg(A) and vP (A) is the largest
natural number n such that Pn|A. Further, unless otherwise stated, when
we consider ranging over divisors of a polynomial we always consider only
monic divisors. Therefore, the P and D appearing in the definition of ϕ
and σ are monic.

One thing of note is that, in the function field setting, the twin prime
conjecture was proved by Bender and Pollack [4] in the large q limit for q
odd (in fact, they just need q to grow sufficiently faster than n). Following
this, Bary–Soroker [3] proved the full Hardy–Littlewood prime k-tuple con-
jecture in the large q limit for q odd and Carmon [5] proved it for q even.
However, even with this big hammer it doesn’t seem to help us prove the in-
finitude of solutions to ϕ(F ) = σ(G). Indeed, if we had a prime polynomial
P such that P + 2 was also prime, then

σ(P ) = |P |+ 1 = qdeg(P ) + 1

6= qdeg(P ) − 1 = qdeg(P+2) − 1

= |P + 2| − 1 = ϕ(P + 2).

The philosophy of the connection between the integers and function fields
is that a true statement in one setting should have analogous true statement
in the other. While the functions defined in (1.1) and (1.2) are the standard
analogues in the function field setting we find that the analogous statements
are almost never true.

Theorem 1.1. If q = 2 or 3 then there are infinitely many solutions to
ϕ(F ) = σ(G) with F,G ∈ Fq[T ] while if q 6= 2 or 3, the only solution is the
trivial solution F = G = 1.
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This is a sharp contrast to the integer setting. Not only do we not get
infinitely many solutions, for most q we do not get even one coincidental
non-trivial one. A key ingredient for proving Theorem 1.1 for q 6= 2, 3
is a result on primitive prime divisors of the sequence {an − bn}n≥1 (see
Section 2.3 for more on this).

The proof to Theorem 1.1 for q = 2, 3 can be done by construction. For
every tuple of positive integers v = (v0, v1, . . . , vn), define

(1.3) Vq(v) =
{

(F,G) ∈ Fq[T ] :
G =

∏n
i=1 P

vi
i , F = Pn+1,

deg(Pk) = v0
∏k−1
i=1 (vi + 1)

}
where the Pi are distinct prime polynomials.

Lemma 1.2. If (F,G) ∈ V2(v) such that v0 = 1 then ϕ(F ) = σ(G). While
if (F,G) ∈ V3(v) with v0 = 2, then ϕ(TF ) = σ(T (T + 1)G).

Clearly, the sets described in Lemma 1.2 are infinite. Therefore, this
lemma implies Theorem 1.1 for q = 2, 3. Moreover, the sets Vq(v) together
with some finite, exceptional sets generate all the solutions to ϕ(F ) = σ(G).

Theorem 1.3. Suppose q = 2 or q = 3. Then there exists a finite set of
tuples of polynomials Eq ⊂ Fq[T ] × Fq[T ] such that if ϕ(F ) = σ(G), then
F =

∏n
i=0 Fi, G =

∏n
i=0Gi with gcd(Fi, Fj) = gcd(Gi, Gj) = 1, i 6= j,

(F0, G0) ∈ Eq and (Fi, Gi) ∈ Vq(vi) for some vi such that vi,0|6 if q = 2 or
vi,0|2 if q = 3.

Again, a main tool in proving this classification theorem is a result on
primitive prime divisors of the sets {2n − 1}n≥1 and {3n − 1}n≥1.

In Section 4 we discuss the exceptional sets and the possible values of n
and the v’s. We get the following corollary.

Corollary 1.4. With the same notation as in Theorem 1.3, if q = 3 then
we must have n ≤ 2. Moreover, all possible values of v1,v2 such that vi,0|2
are possible.

If q = 2, we must have n ≤ 3. Moreover all possible values of v1,v2,v3
such that vi,0|6, i = 1, 2 and v3,0 = 1 are possible except for (2, 2), (2, 2, 1)
and (1, 1, 1).

Note that the three exceptions in the case q = 2 come from the fact that
F2 is a very small field and hence only has two polynomials of degree 1 and
only one polynomial of degree 2.

1.3. Other Formulations. One reason why we can not find solutions to
φ(F ) = σ(G) is because φ(F ) will typically be divisible by a large power of
q − 1 while it is difficult to enforce this condition on σ(G). This is not an
issue when q = 2 and has an easy fix when q = 3 with the observation that
3 + 1 = (3− 1)2.
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There is a natural way to reformulate σ that would incorporate powers
of q − 1. Namely, define

σnm(F ) =
∑∗

D|F
|D|

where ∗ denotes the sum to be over not necessarily monic divisors of F .
Moreover the nm in the subscript stands for non-monic and should not
be confused with the standard notation σk, the sum of the kth powers of
divisors.

Then we have infinitely many solutions to ϕ(F ) = σnm(G) for F,G ∈
Fq[T ], for any q. Indeed,

σnm(Tn) =
∑
α∈F∗

q

n∑
j=0
|αT j | = (q − 1)

n∑
j=0

qj = qn+1 − 1 = ϕ(P )

where P is any prime polynomial of degree n+ 1.
However, it is generally accepted that the sum of monic divisors is the

correct analogue in the function field setting as monic polynomials corre-
spond to positive integers.

Since we are looking at analogues of sums of divisors, another natural
choice would be to do just that: sum the divisors. Thus, we can consider
the new function

σ̃(F ) =
∑
D|F

D.

Now, to consider incidences to σ̃ and ϕ, it is clear we must modify ϕ slightly
in order for this question to make sense. Thus we define

ϕ̃(F ) =
∏
P |F

P vP (F )−1(P − 1).

That is, we just remove the norm function in the definition of the usual ϕ.

Theorem 1.5. The number of solutions to ϕ̃(F ) = σ̃(G) for F,G ∈ Fq[T ]
with deg(F ) = deg(G) = n is � qn

n2 as q tends to infinity.

Proof. The Hardy–Littlewood Theorem for function fields ([3, 4, 5]) states
that as q tends to infinity, the number of primes P of a fixed degree n such
that P + 2 is also prime is � qn

n2 as q tends to infinity. Now, it is easy to
see that σ̃(P ) = ϕ̃(P + 2). �

As we mentioned above, Ford and Pollack [8] showed that under a uni-
form Hardy–Littlewood conjecture they can show that the number of so-
lutions to ϕ(n) = σ(m) with n,m less than x is at least x

(log x)1+o(1) . Now,
Bary–Soroker [3] and Carmon [5] give us a uniform Hardy–Littlewood con-
jecture in the large q limit. So it is likely possible to adapt Ford and Pollack’s
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methods to the function field setting and prove, unconditionally, that there
are at least qn

n1+o(1) solutions to ϕ̃(F ) = σ̃(G).
We note that in the special case q = 2, we get that ϕ̃(P ) = σ̃(P ) for

all primes P . Therefore, we get that the number of solutions in F2[T ] with
deg(F ) = deg(G) = n will be greater than 1

22n, as F = G, with F square-
free will always give a solution. It would be interesting to determine if for
any other q we get a positive proportion of solutions to φ̃(F ) = σ̃(G) with
deg(F ) = deg(G) = n as n tends to infinity.

Acknowledgements. I would like to thank Jake Chinis for initially asking
me this question and for useful conversations at the early stages. I would
also like to thank Zeev Rudnick for pointing me to the work of Zsigmondy
and Andrés Jaramillo Puentes for suggesting computation tools that helped
with enumerating the exceptional sets. Finally, I would like to thank the
anonymous referee for useful comments and details on the history of prim-
itive prime divisors.

2. Proof of Theorem 1.1

2.1. Proof of Lemma 1.2.

Proof of Lemma 1.2. Let (F,G) ∈ V2(v) for some v such that v0 = 1. Then

σ(G) =
n∏
i=1

(|Pi|vi + |Pi|vi−1 + · · ·+ |Pi|+ 1) =
n∏
i=1

|Pi|vi+1 − 1
|Pi| − 1

=
n∏
i=1

2
∏i

j=1(vj+1) − 1

2
∏i−1

j=1(vj+1) − 1

= 2
∏n

j=1(vj+1) − 1 = ϕ(F )

Let (F,G) ∈ V3(v) for some v such that v0 = 2. First, we note that since
v0 = 2 all the primes dividing F and G have degree greater than or equal
to 2. In particular, gcd(F, T ) = gcd(G,T (T + 1)) = 1. Therefore

σ(T (T + 1)G) = (3 + 1)2
n∏
i=1

(|Pi|vi + |Pi|vi−1 + · · ·+ |Pi|+ 1)

= 16
n∏
i=1

|Pi|vi+1 − 1
|Pi| − 1 = 16

n∏
i=1

32
∏i

j=1(vj+1) − 1

32
∏i−1

j=1(vj+1) − 1

= 1632
∏n

j=1(vj+1) − 1
32 − 1

= 2(32
∏n

j=1(vj+1) − 1) = ϕ(TF ) �
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2.2. Preliminary Lemma. Before we continue with the proof of Theo-
rem 1.1 we have a preliminary lemma that reduces our search down signif-
icantly.

Lemma 2.1. Suppose ϕ(F ) = σ(G) then F must be square-free. Moreover,
if q 6= 2, then the number of prime divisors of F must be even.

Proof. We can rewrite ϕ(F ) as a sum of divisors in the following way:

ϕ(F ) =
∑
D|F

µ(F/D)|D|.

Then we notice that ϕ(F ) ≡ µ(F ) mod q. Moreover, we note that σ(G) ≡ 1
mod q. Hence, if ϕ(F ) = σ(G), we must have µ(F ) ≡ 1 mod q. The result
then follows. �

2.3. Key Proposition. For any sequence U1, U2, . . . , Un, . . . , we will say
that Un has a primitive prime divisor if there exists a prime, p, such that
p|Un but p - Um for all m < n. A major tool in this paper is the following
result on primitive prime divisors of a class of sequences.

Theorem 2.2. For any a > b positive, coprime integers all the elements
of the sequence

{a− b, a2 − b2, . . . , an − bn, . . .}
have a primitive prime divisor unless a = 2, b = 1 and n = 6 or a+ b is a
power of 2 and n = 2.

This was first proved by Bang in [2] in the case b = 1 and then proved
in general by Zsigmondy [10]. Later Artin [1] gave a different proof of this.

We will use this theorem to show that unless a = 2 or 3, an element in
the set multiplicatively generated by {a− 1, a2 − 1, . . .} will have a unique
decomposition. This will be instrumental in proving the absence of solutions
when q 6= 2, 3.

First, recall that a multiset is a set of not necessarily distinct objects
{x1, . . . , xn}. The multiplicity of an object x is the number of xi = x, with
the multiplicity being 0 if x does not appear in the multiset. We say two
multisets {x1, . . . , xn} and {y1, . . . , ym} are equal if each object occurs with
the same multiplicity.

Proposition 2.3. Let a be any integer greater than 1, (n1, . . . , nt) and
(m1, . . . ,ms) any tuples of positive integers such that

t∏
i=1

(ani − 1) =
s∏
j=1

(amj − 1).

Then if a = 2, we must have {ni : ni - 6} = {mj : mj - 6} as multisets; if
a = 3, we must have {ni : ni - 2} = {mj : mj - 2} as multisets; if a 6= 2, 3,
we must have {n1, . . . , nt} = {m1, . . . ,ms} as multisets.
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Proof. We will begin in the case where a 6= 2, 2m−1. Then by Theorem 2.2,
we get that there always exists a prime, p, that divides an− 1 but does not
divide am − 1 for all such m < n. Define pn as the smallest such prime.
Denote

N0 := N =
t∏
i=1

(ani − 1) =
s∏
j=1

(amj − 1).

Let k be largest such that pk|N . Then we must have that ak−1|N . Indeed,
if there were some ` > k such that a` − 1|N , then p`|N contradicting the
maximality of k. Moreover, if all the ni,mj < k, then we could not have
pk|N as pk - am − 1 for all m < k. By the same reasoning we see that

N1 := N

(ak − 1)vpk
(N)/vpk

(ak−1) ∈ Z

and pk - N1. Here, we again use the notation vp(m) to denote the largest
number n such that pn|m. Hence, we need that

|{i : ni = k}| = |{j : mj = k}| = vpk
(N)/vpk

(ak − 1).
Repeating the same process with N1 multiple times we get that for any `,
we must have

|{i : ni = `}| = |{j : mj = `}| = vp`
(N)/vp`

(a` − 1)
and thus {n1, . . . , nt} = {m1, . . . ,ms} as multisets.

Now, if a = 2m − 1, again by Theorem 2.2, we can define pn in the same
way as long as n 6= 1, 2 and, repeating the same process, we would find that
for all ` 6= 1, 2, we would get that

|{i : ni = `}| = |{j : mj = `}| = vp`
(N)/vp`

(a` − 1).
In particular, we have shown that {ni : ni - 2} = {mj : mj - 2} as multisets
which finishes the case for a = 3.

We have reduced the question down to the case where all the ni,mj are
either 1 or 2. Let c`, d` be the number of ni,mj that equal `, respectively.
Then we would need

(a− 1)c1(a2 − 1)c2 = (a− 1)d1(a2 − 1)d2 .

Now, since a = 2m − 1, we get

(a− 1)c1(a2 − 1)c2 = 2c1+(m+1)c2(2m−1 − 1)c1+c2

= 2d1+(m+1)d2(2m−1 − 1)d1+d2 = (a− 1)d1(a2 − 1)d2 .

Therefore, as long as m 6= 2 (or a 6= 3), we get that
c1 + (m+ 1)c2 = d1 + (m+ 1)d2 c1 + c2 = d1 + d2

whence c1 = d1 and c2 = d2 and {n1, . . . , nt} = {m1, . . . ,ms} as multisets.
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Finally, when a = 2, using the same method, Theorem 2.2 as well as the
observation that the primes of 26 − 1 come from 22 − 1 and 23 − 1 tells us
that as long as ` 6= 1, 2, 3, 6, we get that

|{i : ni = `}| = |{j : mj = `}| = vp`
(N)/vp`

(a` − 1).
This concludes the proof. �

2.4. Proof of Theorem 1.1.

Proof of Theorem 1.1. We already proved the case where q = 2, 3 in Sec-
tion 2.1. Therefore, let q 6= 2, 3, and suppose that ϕ(F ) = σ(G). Then, by
Lemma 2.1, F must be square-free with an even number of prime divisors.
Therefore,

ϕ(F ) =
∏
P |F

(|P | − 1) =
∏
P |F

(qdeg(P ) − 1).

On the other hand if we write G =
∏
P vP , then we would have

σ(G) =
∏
P |G

σ(P vp) =
∏
P |G

(|P |vp + |P |vp−1 + · · ·+ |P |+ 1)

=
∏
P |G

|P |vp+1 − 1
|P | − 1 =

∏
P |G

q(vp+1) deg(P ) − 1
qdeg(P ) − 1

.

Since ϕ(F ) = σ(G), we would then need∏
P |F

(qdeg(P ) − 1)
∏
P |G

(qdeg(P ) − 1) =
∏
P |G

(q(vp+1) deg(P ) − 1).

By Proposition 2.3, we get
{deg(P ) : P |F} ∪ {deg(P ) : P |G} = {(vp + 1) deg(P ) : P |G}

as multisets. However, we see that the left hand side set has a size greater
than or equal the right hand side with equality if and only if {deg(P ) : P |F}
is empty. That is, if and only if F = 1. Then we would have σ(G) = ϕ(1) = 1
and hence G = 1, as well. �

3. Characterising the Solutions

We will now characterise all the solutions to ϕ(F ) = σ(G) when q = 2
or 3 thus proving Theorem 1.3.

Let d2 = 6 and d3 = 2 and define

Ẽq = {(F0, G0) ∈ Fq[T ] : P |F0 =⇒ deg(P )|dq
and P v||G0 =⇒ (v + 1) deg(P )|dq}

where we use the convention that P v||G0 indicates that P v|G0 but P v+1 -
G0. Clearly Ẽq is finite and we will show that Eq ⊂ Ẽq.
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If F =
∏n
i=1 Pi and G =

∏m
i=1Q

vi
i such that ϕ(F ) = σ(G) then, as in the

proof of Theorem 1.1, we get
n∏
i=1

(
qdeg(Pi) − 1

) m∏
i=1

(
qdeg(Qi) − 1

)
=

m∏
i=1

(
q(vi+1) deg(Qi) − 1

)
.

Applying Proposition 2.3 we need that

{deg(Pi) : deg(Pi) - dq} ∪ {deg(Qi) : deg(Qi) - dq}
= {(vi + 1) deg(Qi) : (vi + 1) deg(Qi) - dq}

as multisets.
We see that {deg(Qi) : deg(Qi) - dq} = {(vi + 1) deg(Qi) : (vi + 1) ×

deg(Qi) - dq} as multisets if and only if both sets are empty. Thus, if
{deg(Pi) : deg(Pi) - dq} is empty, then all three sets are empty and we get
(F,G) ∈ Ẽq.

Hence, without loss of generality, assume deg(Pn) - dq. Then there exists
a Qi1 such that deg(Pn) = (vi1 + 1) deg(Qi1). If deg(Qi1) - dq, then there
exists a Qi2 such that deg(Qi1) = (vi2 + 1) deg(Qi2). We continue this
process until we find a Qik such that deg(Qik)|dq. Relabel Qij = Qn,k−j+1
and vij = vn,k−j+1, so that we get

deg(Pn) = deg(Qn,1)
k∏
j=1

(vn,j + 1) deg(Qn,i) = deg(Qn,1)
i−1∏
j=1

(vn,j + 1).

That is, we find that (Pn,
∏k
i=1Q

vn,i

n,i ) ∈ Vq(v) for some v such that
v0 = deg(Qn,1)|dq.

Repeating this process for all the Pj such that deg(Pj) - dq we get our
result with Eq some subset of Ẽq.

4. The Exceptional Sets

Let F =
∏n
i=0 Fi, G =

∏n
i=0Gi such that (F0, G0) ∈ Ẽq, gcd(Fi, Fj) =

gcd(Gi, Gj) = 1, (Fi, Gi) ∈ Vq(vi) for some vi = (vi,0, vi,1, . . . , vi,ni) with
vi,0|dq and ϕ(F ) = σ(G). In this section we will discuss what elements of
Ẽq can appear in Eq as well as the possible values for n and the vi.

We have that

σ(G) =
∏
P |G0

q(vP +1) deg(P ) − 1
qdeg(P ) − 1

n∏
i=1

q
vi,0
∏ni

j=1(vi,j+1) − 1
qvi,0 − 1

and

ϕ(F ) =
∏
P |F0

(
qdeg(P ) − 1

) n∏
i=1

(
q
vi,0
∏ni

j=1(vi,j+1) − 1
)
.
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Hence, we need

(4.1)
∏
P |F0

(
qdeg(P ) − 1

) ∏
P |G0

(
qdeg(P ) − 1

) n∏
i=1

(qvi,0 − 1)

=
∏
P |G0

(
q(vP +1) deg(P ) − 1

)
.

Notice that the degrees of the polynomials on the left hand side of (4.1)
all divide dq. Therefore, we must have that (vP + 1) deg(P )|dq for all P |G0
as well as otherwise we would necessarily have a prime dividing the right
hand side of (4.1) that does not divide the left hand side, by Theorem 2.2.

For ease of notation, we will denote
ωd(F ) = #{P |F : deg(P ) = d},(4.2)
ωd,i(F ) = #{P |F : deg(P ) = d, vP = i}(4.3)

and

πq(d) = #{P ∈ Fq[T ] : deg(P ) = d}.(4.4)
Then we can rewrite (4.1) in terms of linear equations in the ωd and ωd,i of
F0, G0, G where d|dq. Moreover, we have the obvious inequality ωd,i(F ) ≤
ωd(F ) ≤ πq(d).

4.1. q = 3. We will begin with the case q = 3 as it is simpler.
Using the fact that dq = 2, and our observation that (vP+1) deg(P )|dq for

all P |G0, we see that G0 must be a product of linear primes with exponent
1. In particular, we see that ω1,1(G0) = ω1(G0).

Now, noting that (3− 1) = 2 and (32 − 1) = 23, we can rewrite (4.1) as

2ω1(F0)+ω1(G)+3(ω2(F0)+ω2(G)) = 23ω1(G0).(4.5)
Thus we need to find the solutions to

ω1(F0) + ω1(G) + 3(ω2(F0) + ω2(G)) = 3ω1(G0)
under the constraints that
ω1(F0), ω1(G) ≤ π3(1) = 3 ω2(F0), ω2(G) ≤ π3(2) = 3 ω1(G0) ≤ ω1(G).
Manually going through all the possible solutions, we find that the tuple

(ω1(F0), ω1(G0), ω1(G), ω2(F0), ω2(G)) must be one of
(0, 0, 0, 0, 0), (2, 1, 1, 0, 0), (1, 1, 2, 0, 0), (0, 1, 3, 0, 0), (1, 2, 2, 1, 0),
(1, 2, 2, 0, 1), (3, 2, 3, 0, 0), (0, 2, 3, 1, 0), (0, 2, 3, 0, 1), (0, 3, 3, 0, 2),

(0, 3, 3, 1, 1), (0, 3, 3, 2, 0), (3, 3, 3, 0, 1), (3, 3, 3, 1, 0).
We summarize the information in the following table. E3 is the set of

tuples (F0, G0) such that F0 and G0 are in the same row. We recall that G0
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is always a product of linear primes, so the Q’s appearing in the G0 column
will always be linear primes. Further, the third column shows the value of
n while the last column gives restrictions on the possible v values that can
occur with ∅ indicating that n = 0 and there would be no V3(v) part.

F0 G0 n v
1 1 0 ∅

P1P2, deg(Pi) = 1 Q 0 ∅
P1P2,deg(Pi) = i Q1Q2 0 ∅
P1P2, deg(Pi) = 2 T (T + 1)(T + 2) 0 ∅

T (T + 1)(T + 2)P,deg(P ) = 2 T (T + 1)(T + 2) 0 ∅
P,deg(P ) = 1 Q 1 v0 = 1
P,deg(P ) = 2 Q1Q2 1 v0 = 1
T (T + 1)(T + 2) Q1Q2 1 v0 = 1
P,deg(P ) = 1 Q1Q2 1 v0 = 2
P,deg(P ) = 2 T (T + 1)(T + 2) 1 v0 = 2
T (T + 1)(T + 2) T (T + 1)(T + 2) 1 v0 = 2

1 Q 2 v1,0 = v2,0 = 1
1 Q1Q2 2 v1,0 = 1, v2,0 = 2
1 T (T + 1)(T + 2) 2 v1,0 = v2,0 = 2

Observing this table proves Corollary 1.4 for q = 3.

4.2. q = 2. Following the same method as for q = 3, we can use the
observation 22 − 1 = 3, 23 − 1 = 7, 26 − 1 = 32 · 7 to get that a solution
to (4.1) corresponds to a solution to the system of equations

ω2(F0) + ω2(G) + 2ω6(F0) + 2ω6(G)
= ω1,1(G0) + 2ω1,5(G0) + 2ω2,2(G0) + 2ω3,1(G0)

ω3(F0) + ω3(G) + ω6(F0) + ω6(G)
= ω1,2(G0) + ω1,5(G0) + ω2,2(G0) + ω3,1(G0)

subject to the constraints that
ω2(F0), ω2(G) ≤ π2(2) = 1 ω3(F0), ω3(G) ≤ π2(3) = 2

ω6(F0), ω6(G) ≤ π2(6) = 9 ω1,1(G0) + ω1,2(G0) + ω1,5(G0) ≤ π2(1) = 2
ω2,2(G0) ≤ ω2(G) ω3,1(G0) ≤ ω3(G).

Again, we can manually find all the solutions to the above equations.
We find that after observing all possible solutions we always have n ≤ 3.
Further, if n = 0 then there is no v; if n = 1 then we can find a solution
for all v such that v1|6; if n = 2, we can find a solution for all v1,v2
such that v1,0, v2,0|6 except for (v1,0, v2,0) = (2, 2); if n = 3, then we can
find a solution for all v1,v2,v3 such that v1,0, v2,0|6, v3,0 = 1 except for
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(v1,0, v2,0, v3,0) = (1, 1, 1) or (2, 2, 1). We do not write down all the possible
solutions as there are too many cases and it is not enlightening to do so.
However, in the table below we give an example for each possible case. For
ease of notation, we will denote Pi, Qj as primes such that deg(Pi) = i and
deg(Qj) = j.

F0 G0 n v
1 1 0 ∅
1 1 1 v0 = 1
P2 Q3 1 v0 = 2
P2 Q2

2 1 v0 = 3
P2 Q2

2Q3 1 v0 = 6
1 1 2 v1,0 = 1, v2,0 = 1
P2 Q3 2 v1,0 = 1, v2,0 = 2
P2 Q2

2 2 v1,0 = 1, v2,0 = 3
P2 Q2

2Q3 2 v1,0 = 1, v2,0 = 6
P2 Q2

1Q3 2 v1,0 = 2, v2,0 = 3
P2 Q2

1Q3,1Q3,2 2 v1,0 = 2, v2,0 = 6
P2 Q2

1Q
2
2 2 v1,0 = 3, v2,0 = 3

P2 Q5
1Q

2
2 2 v1,0 = 3, v2,0 = 6

P2 Q5
1Q

2
2Q3 2 v1,0 = 6, v2,0 = 6

For examples with n = 3, F = F0F1F2F3, G = G0G1G2G3, let (F3, G3) ∈
V2(v3) with v3,0 = 1 and (F0F1F2, G0G1G2) one of the examples above with
n = 2.

Even though all our examples have F0 either 1 or a prime of degree 2
this is not always the case. For example, in the case that n = 1 and v0 = 6
we can choose

F0 = P2P6 G0 = Q5
1Q

2
2Q3.
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