In this paper we establish an asymptotic formula for the sum of the first
Dans cet article, nous établissons une formule asymptotique pour la somme des
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1081
Keywords: Asymptotic expansion, Mandl’s inequality, Sum of prime numbers
Christian Axler 1

@article{JTNB_2019__31_2_293_0, author = {Christian Axler}, title = {On the sum of the first $n$ prime numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {293--311}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1081}, zbl = {1418.11130}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/} }
TY - JOUR AU - Christian Axler TI - On the sum of the first $n$ prime numbers JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 293 EP - 311 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/ DO - 10.5802/jtnb.1081 LA - en ID - JTNB_2019__31_2_293_0 ER -
%0 Journal Article %A Christian Axler %T On the sum of the first $n$ prime numbers %J Journal de théorie des nombres de Bordeaux %D 2019 %P 293-311 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/ %R 10.5802/jtnb.1081 %G en %F JTNB_2019__31_2_293_0
Christian Axler. On the sum of the first $n$ prime numbers. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 293-311. doi : 10.5802/jtnb.1081. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1081/
[1] Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | Zbl
[2] Über die Primzahl-Zählfunktion, die
[3] On a sequence involving prime numbers, J. Integer Seq., Volume 18 (2015) no. 7, 15.7.6, 13 pages | MR | Zbl
[4] New estimates for some functions defined over primes, Integers, Volume 18 (2018), A52, 21 pages | MR | Zbl
[5] Improving the Estimates for a Sequence Involving Prime Numbers, Notes Number Theory Discrete Math., Volume 25 (2019) no. 1, pp. 8-13 | DOI | Zbl
[6] New estimates for the
[7] La determinazione assintotica dell’
[8] Maximal product of primes whose sum is bounded, Proc. Steklov Inst. Math., Volume 282 (2013) no. 1, pp. 73-102 | DOI | MR | Zbl
[9] An arithmetic equivalence of the Riemann hypothesis, J. Aust. Math. Soc., Volume 106 (2019) no. 2, pp. 235-273 | DOI | MR | Zbl
[10] Autour de la fonction qui compte le nombre de nombres premiers, Ph. D. Thesis, Université de Limoges (France) (1998) (http://www.theses.fr/1998LIMO0007)
[11] The
[12] Explicit estimates of some functions over primes, Ramanujan J., Volume 45 (2018) no. 1, pp. 227-251 | DOI | MR | Zbl
[13] Sur la distribution des zéros de la fonction
[14] On the ratio of the arithmetic and geometric means of the prime numbers and the number
[15] Effective bounds for the maximal order of an element in the symmetric group, Math. Comput., Volume 53 (1989) no. 188, pp. 665-678 | DOI | MR | Zbl
[16] Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux, Volume 8 (1996) no. 1, pp. 213-238 | MR | Zbl
[17] Permanence de relations de récurrence dans certains développements asymptotiques, Publ. Inst. Math., Nouv. Sér., Volume 43 (1988), pp. 17-25 | MR | Zbl
[18] The
[19] Approximate formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94 | DOI | MR | Zbl
[20] Sharper bounds for the Chebyshev functions
[21] Fast computation of some asymptotic functional inverses, J. Symb. Comput., Volume 17 (1994) no. 3, pp. 227-236 | DOI | MR | Zbl
[22] On the asymptotic expansion of the sum of the first
[23] Some new inequalities for primes (2012) (https://arxiv.org/abs/1209.3729)
[24] On the maximal order in
[25] Recherches analytiques la théorie des nombres premiers, Ann. Soc. scient. Bruxelles, Volume 20 (1896), pp. 183-256 | Zbl
[26] Sur la fonction
Cité par Sources :