Shimura curves are moduli spaces of abelian surfaces with quaternion multiplication. Models of Shimura curves are very important in number theory. Klein’s icosahedral invariants
Une courbe de Shimura est un espace de modules de surfaces abéliennes avec multiplication par une algèbre de quaternions. En utilisant les périodes pour une famille des surfaces
Révisé le :
Accepté le :
Publié le :
Keywords:
Atsuhira Nagano 1

@article{JTNB_2017__29_2_603_0, author = {Atsuhira Nagano}, title = {Icosahedral invariants and {Shimura} curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {603--635}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {2}, year = {2017}, doi = {10.5802/jtnb.993}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/} }
TY - JOUR AU - Atsuhira Nagano TI - Icosahedral invariants and Shimura curves JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 603 EP - 635 VL - 29 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/ DO - 10.5802/jtnb.993 LA - en ID - JTNB_2017__29_2_603_0 ER -
%0 Journal Article %A Atsuhira Nagano %T Icosahedral invariants and Shimura curves %J Journal de théorie des nombres de Bordeaux %D 2017 %P 603-635 %V 29 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/ %R 10.5802/jtnb.993 %G en %F JTNB_2017__29_2_603_0
Atsuhira Nagano. Icosahedral invariants and Shimura curves. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 603-635. doi : 10.5802/jtnb.993. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/
[1] Jacobians of Genus One Curves, J. Number Theory, Volume 90 (2001) no. 2, pp. 304-315 | DOI
[2] Elliptic fibrations of
[3] Abelian surfaces with an automorphism and quaternionic multiplication, Can. J. Math., Volume 68 (2016) no. 1, pp. 24-43 | DOI
[4] Lattice polarized
[5] Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, 1998, xii+499 pages
[6] Mirror symmetry for lattice polarized
[7] Shimura curve computations, Algorithmic number theory. 3rd international symposium (Lecture Notes in Computer Science), Volume 1423 (1998), pp. 1-47
[8] Shimura curve computations via
[9]
[10] Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 16, Springer, 1988, ix+291 pages
[11] Modular surfaces associated with toric
[12] Explicit form of quaternion modular embeddings, Osaka J. Math., Volume 32 (1995) no. 3, pp. 533-546
[13] Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, Tôhoku Math. J., Volume 47 (1995) no. 2, pp. 271-296 | DOI
[14] The ring of Hilbert modular forms for real quadratic fields of small discriminant, Modular Funct. of one Var. VI, Proc. int. Conf., Bonn 1976 (Lecture Notes in Mathematics), Volume 627 (1977), pp. 287-323
[15] Sur les fonctions abéliennes singulières, Oeuvres de G. Humbert 2, pub. par les soins de Pierre Humbert et de Gaston Julia, Gauthier-Villars, 1936, pp. 297-401
[16] Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Tauber, 1884
[17] Fundamental Domains for Shimura Curves, J. Théor. Nombres Bordx, Volume 15 (2003) no. 1, pp. 205-222 | DOI
[18]
[19] On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci., Univ. Tokyo, Volume 25 (1978), pp. 277-300
[20] Hilbertsche Modulformen und Modulfunktionen zu
[21] Period differential equations for the families of
[22] A theta expression of the Hilbert modular functions for
[23] Double integrals on a weighted projective plane and Hilbert modular functions for
[24] Icosahedral invariants and a construction of class fields via periods of
[25] Modular map for the family of abelian surfaces via elliptic
[26] Modular Shimura varieties and forgetful maps, Trans. Am. Math. Soc., Volume 356 (2004) no. 4, pp. 1535-1550 | DOI
[27] Shimura curves embedded in Igusa’s threefold, Modular curves and Abelian varieties. Based on lectures of the conference, Bellaterra, Barcelona, July 2002 (Prog. Math.), Volume 224, Birkhäuser, 2004, pp. 263-276
[28] Construction of class fields and zeta functions of algebraic curves, Ann. Math., Volume 85 (1967), pp. 58-159 | DOI
[29] On canonical models of arithmetic quotients of bounded symmetric domains, Ann. Math, Volume 91 (1970), pp. 144-222 | DOI
[30] On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann., Volume 215 (1975), pp. 135-164 | DOI
[31] Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series, 46, Princeton University Press, 1998, ix+217 pages
[32] Arithmétiques des algèbres de quaternions, Lecture Notes in Mathematics, 80, Springer, 1980, vii+169 pages
[33] Shimura Curve Computations, Arithmetic geometry (Clay Mathematics Proceedings), Volume 8, Clay Mathematics Institute, 2009, pp. 103-113
[34] Quaternionic loci in Siegel’s modular threefolds, 2015 (http//www.tims.ntu.edu.tw/download.talk.Summary.pdf)
Cité par Sources :