General concepts and strategies are developed for identifying the isomorphism type of the second
Des concepts et des stratégies généraux sont développés pour identifier le type d’isomorphisme du deuxième
Keywords:
Daniel C. Mayer 1
@article{JTNB_2013__25_2_401_0, author = {Daniel C. Mayer}, title = {The distribution of second $p$-class groups on coclass graphs}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {401--456}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {2}, year = {2013}, doi = {10.5802/jtnb.842}, mrnumber = {3228314}, zbl = {1292.11126}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.842/} }
TY - JOUR AU - Daniel C. Mayer TI - The distribution of second $p$-class groups on coclass graphs JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 401 EP - 456 VL - 25 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.842/ DO - 10.5802/jtnb.842 LA - en ID - JTNB_2013__25_2_401_0 ER -
%0 Journal Article %A Daniel C. Mayer %T The distribution of second $p$-class groups on coclass graphs %J Journal de théorie des nombres de Bordeaux %D 2013 %P 401-456 %V 25 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.842/ %R 10.5802/jtnb.842 %G en %F JTNB_2013__25_2_401_0
Daniel C. Mayer. The distribution of second $p$-class groups on coclass graphs. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 2, pp. 401-456. doi : 10.5802/jtnb.842. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.842/
[1] M. Arrigoni, On Schur
[2] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Sem. Univ. Hamburg 5 (1927), 353–363. | MR
[3] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7 (1929), 46–51. | MR
[4] J. A. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order. Bull. Austral. Math. Soc. 17 (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. | Zbl
[5] J. A. Ascione, On
[6] J. A. Ascione, On
[7] A. Azizi et M. Taous, Determination des corps
[8] A. Azizi, A. Zekhnini et M. Taous, Capitulation dans le corps des genres de certain corps de nombres biquadratique imaginaire dont le
[9] A. Azizi, A. Zekhnini et M. Taous, Sur la capitulation des
[10] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo. Ann. di Mat. (Ser. 3) 1 (1898), 137–228.
[11] L. Bartholdi and M. R. Bush, Maximal unramified
[12] T. Bembom, The capitulation problem in class field theory. Dissertation, Georg-August-Universität Göttingen, 2012.
[13] E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields with
[14] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order. 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
[15] N. Blackburn, On a special class of
[16] N. Blackburn, On prime-power groups in which the derived group has two generators. Proc. Camb. Phil. Soc. 53 (1957), 19–27. | MR | Zbl
[17] R. Bölling, On ranks of class groups of fields in dihedral extensions over
[18] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | MR | Zbl
[19] W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.), Handbook of Magma functions. Edition 2.19, Sydney, 2012.
[20] N. Boston, M. R. Bush and F. Hajir, Heuristics for
[21] N. Boston, M. R. Bush and F. Hajir, Heuristics for
[22] N. Boston and J. Ellenberg, Random pro-
[23] M. Boy, On the second class group of real quadratic number fields. Dissertation, Technische Universität Kaiserslautern, 2012.
[24] J. R. Brink, The class field tower for imaginary quadratic number fields of type
[25] J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields. manuscripta math. 57 (1987), 425–450. | MR | Zbl
[26] M. R. Bush, Schur
[27] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating
[28] H. Dietrich, Periodic patterns in the graph of
[29] H. Dietrich, A new pattern in the graph of
[30] M. du Sautoy, Counting
[31] T. E. Easterfield, A classification of groups of order
[32] B. Eick and D. Feichtenschlager, Infinite sequences of
[33] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc. 40 (2) (2008), 274–288. | MR | Zbl
[34] B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O’Brien, On the classification of groups of prime-power order by coclass: The
[35] D. Feichtenschlager, Symbolic computation with infinite sequences of
[36] C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), no. 235, 1293–1303. | MR | Zbl
[37] G. Frei, P. Roquette, and F. Lemmermeyer, Emil Artin and Helmut Hasse. Their Correspondence 1923–1934. Universitätsverlag Göttingen, 2008. | MR
[38] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 7 (1929), 14–36. | MR
[39] G. Gamble, W. Nickel, and E. A. O’Brien, ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006, an accepted GAP 4 package, available also in MAGMA.
[40] The GAP Group, GAP — Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12. Aachen, Braunschweig, Fort Collins, St. Andrews, 2008, (http://www.gap-system.org).
[41] F. Gerth III, Ranks of
[42] G. Gras, Sur les
[43] M. Hall and J. K. Senior, The groups of order
[44] P. Hall, The classification of prime-power groups. J. Reine Angew. Math. 182 (1940), 130–141. | MR | Zbl
[45] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1–25. | MR | Zbl
[46] D. Hilbert, Ueber den Dirichlet’schen biquadratischen Zahlkörper. Math. Annalen 45 (1894), 309–340. | MR
[47] R. James, The groups of order
[48] Y. Kishi, The Spiegelungssatz for
[49] H. Kisilevsky, Number fields with class number congruent to
[50] H. Koch und B. B. Venkov, Über den
[51] C. R. Leedham-Green and S. McKay, On the classification of
[52] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order. London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002. | MR | Zbl
[53] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I. Arch. Math. 35 (1980), 193–203. | MR | Zbl
[54] F. Lemmermeyer, On
[55] F. Lemmermeyer, Class groups of dihedral extensions. Math. Nachr. 278 (2005), no. 6, 679–691. | MR | Zbl
[56] The MAGMA Group, MAGMA Computational Algebra System, Version 2.19-2. Sydney, 2012, (http://magma.maths.usyd.edu.au).
[57] D. C. Mayer, Principalization in complex
[58] D. C. Mayer, The second
[59] D. C. Mayer, Transfers of metabelian
[60] D. C. Mayer, Principalisation algorithm via class group structure. Preprint, 2011.
[61] D. C. Mayer, Metabelian
[62] D. C. Mayer, The distribution of second
[63] C. McLeman,
[64] R. J. Miech, Metabelian
[65] K. Miyake, Algebraic investigations of Hilbert’s Theorem
[66] B. Nebelung, Klassifikation metabelscher
[67] B. Nebelung, Anhang zu Klassifikation metabelscher
[68] M. F. Newman, Groups of prime-power order. Groups — Canberra 1989, Lecture Notes in Mathematics, vol. 1456, Springer, 1990, pp. 49–62. | MR | Zbl
[69] M. F. Newman and E. A. O’Brien, Classifying
[70] H. Reichardt, Arithmetische Theorie der kubischen Zahlkörper als Radikalkörper. Monatsh. Math. Phys. 40 (1933), 323–350. | MR | Zbl
[71] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166 (1932), 201–203. | Zbl
[72] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19–41. | Zbl
[73] O. Schreier, Über die Erweiterung von Gruppen II. Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346. | MR
[74] I. R. Shafarevich, Extensions with prescribed ramification points, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 71–95. | Numdam | MR | Zbl
[75] O. Taussky, A remark on the class field tower. J. London Math. Soc. 12 (1937), 82–85. | MR
[76] O. Taussky, A remark concerning Hilbert’s Theorem
- 5-Class towers of cyclic quartic fields arising from quintic reflection, Annales mathématiques du Québec, Volume 44 (2020) no. 2, p. 299 | DOI:10.1007/s40316-019-00125-2
- Annihilator ideals of two-generated metabelian p-groups, Journal of Algebra and Its Applications, Volume 17 (2018) no. 04, p. 1850076 | DOI:10.1142/s0219498818500767
- Deep Transfers of p-Class Tower Groups, Journal of Applied Mathematics and Physics, Volume 06 (2018) no. 01, p. 36 | DOI:10.4236/jamp.2018.61005
- Criteria for Three-Stage Towers of p-Class Fields, Advances in Pure Mathematics, Volume 07 (2017) no. 02, p. 135 | DOI:10.4236/apm.2017.72008
- Artin Transfer Patterns on Descendant Trees of Finite p-Groups, Advances in Pure Mathematics, Volume 06 (2016) no. 02, p. 66 | DOI:10.4236/apm.2016.62008
- p-Capitulation over Number Fields with p-Class Rank Two, Journal of Applied Mathematics and Physics, Volume 04 (2016) no. 07, p. 1280 | DOI:10.4236/jamp.2016.47135
- Periodic Bifurcations in Descendant Trees of Finite p-Groups, Advances in Pure Mathematics, Volume 05 (2015) no. 04, p. 162 | DOI:10.4236/apm.2015.54020
- Index-p Abelianization Data of p-Class Tower Groups, Advances in Pure Mathematics, Volume 05 (2015) no. 05, p. 286 | DOI:10.4236/apm.2015.55029
- Principalization of 2-class groups of type (2, 2, 2) of biquadratic fields
, International Journal of Number Theory, Volume 11 (2015) no. 04, p. 1177 | DOI:10.1142/s1793042115500645 - 3-Class field towers of exact length 3, Journal of Number Theory, Volume 147 (2015), p. 766 | DOI:10.1016/j.jnt.2014.08.010
Cité par 10 documents. Sources : Crossref