The Markoff conjecture states that given a positive integer
La conjecture de Markoff dit qu’étant donné un entier positif
@article{JTNB_2009__21_3_757_0, author = {Anitha Srinivasan}, title = {Markoff numbers and ambiguous classes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {757--770}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.701}, mrnumber = {2605546}, zbl = {1209.11036}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.701/} }
TY - JOUR AU - Anitha Srinivasan TI - Markoff numbers and ambiguous classes JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 757 EP - 770 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.701/ DO - 10.5802/jtnb.701 LA - en ID - JTNB_2009__21_3_757_0 ER -
Anitha Srinivasan. Markoff numbers and ambiguous classes. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 757-770. doi : 10.5802/jtnb.701. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.701/
[1] A. Baragar, On the unicity conjecture for Markoff numbers. Canad. Math. Bull. 39 (1996), 3–9. | MR | Zbl
[2] E. Bombieri, Continued fractions and the Markoff tree. Expo. Math. 25 (2007), no. 3, 187–213 | MR | Zbl
[3] J. O. Button, The uniqueness of prime Markoff numbers. Bull. London Math. Soc., 58 (1998), 9–17. | MR | Zbl
[4] J. O. Button, Markoff numbers, principal ideals and continued fraction expansions. Journal of Number Theory, 87 (2001), 77–95. | MR | Zbl
[5] J. W. S. Cassels, An introduction to Diophantine approximation. Cambridge University Press, 1957. | MR | Zbl
[6] H. Cohen, A course in computational algebraic number theory. Springer-Verlag, 1993. | MR | Zbl
[7] H. Cohn, Advanced Number Theory. Dover Publications, 1980. | MR | Zbl
[8] M. L. Lang, S. P. Tan, A simple proof of the Markoff conjecture for prime powers. Geom. Dedicata 129 (2007), 15–22. | MR | Zbl
[9] A. A. Markoff, Sur les formes quadratiques binaires indéfinies I. Math. Ann. 15 (1879), 381–409.
[10] R. A. Mollin, Quadratics. CRC press, Boca Raton, 1996. | MR | Zbl
[11] S. Perrine, Sur une généralisation de la théorie de Markoff. Journal of Number Theory 37 (1991), 211–230. | MR | Zbl
[12] S. Perrine, Un arbre de constantes d’approximation analogue à celui de l’équation diophantienne de Markoff. Journal de Théorie des Nombres de Bordeaux, 10, no. 2, (1998), 321–353. | Numdam | MR | Zbl
[13] P. Ribenboim, My Numbers, My Friends, Popular Lectures on Number Theory. Springer-Verlag, 2000. | MR | Zbl
[14] P. Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum. Math. Ann. 305 (1996), no. 1, 191–203. | MR | Zbl
[15] A. Srinivasan, A note on the Markoff conjecture. Biblioteca de la Revista Matemática Iberoamericana, Proceedings of the “Segundas Jornadas de Teoría de Números” (Madrid, 2007), pp. 253–260.
[16] D. Zagier, On the number of Markoff numbers below a given bound. Math. Comp. 39 (1982), 709–723 | MR | Zbl
[17] Y. Zhang, Conguence and uniqueness of certain Markoff numbers. Acta Arith. 128 (2007), no. 3, 295–301. | MR | Zbl
[18] Y. Zhang, An elementary proof of uniqueness of Markoff numbers which are prime powers. Preprint, arXiv:math.NT/0606283 (version 2).
- The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
- An improvement of the Minkowski bound for real quadratic orders using the Markoff theorem, Journal of Number Theory, Volume 131 (2011) no. 8, pp. 1420-1428 | DOI:10.1016/j.jnt.2011.02.008 | Zbl:1229.11147
Cité par 2 documents. Sources : Crossref, zbMATH