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Markoff numbers and ambiguous classes

par Anitha SRINIVASAN

Résumé. La conjecture de Markoff dit qu’étant donné un entier
positif c il existe au plus un triplet (a, b, c) d’entiers positifs tels
que a ≤ b ≤ c et satisfaisant l’équation a2 + b2 + c2 = 3abc. La
conjecture est vraie pour c une puissance d’un nombre premier
ou deux fois une puissance d’un nombre premier. Nous présen-
tons une preuve élémentaire de ce résultat. Nous montrons égale-
ment que si, dans le groupe des classes des formes de discriminant
d = 9c2 − 4, toute forme ambige dans le genre principal corres-
pond à un diviseur de 3c− 2 alors la conjecture est vraie. Comme
conséquence, nous obtenons un critère, en termes de symboles
de Legendre des premiers divisant d, pour lequel la conjecture
est vraie. Nous énonçons également une conjecture pour le corps
quadratique Q(

√
9c2 − 4) qui est équivalente à la conjecture de

Markoff pour c.

Abstract. The Markoff conjecture states that given a positive
integer c, there is at most one triple (a, b, c) of positive integers
with a ≤ b ≤ c that satisfies the equation a2 + b2 + c2 = 3abc.
The conjecture is known to be true when c is a prime power or
two times a prime power. We present an elementary proof of
this result. We also show that if in the class group of forms of
discriminant d = 9c2 − 4, every ambiguous form in the principal
genus corresponds to a divisor of 3c−2, then the conjecture is true.
As a result, we obtain criteria in terms of the Legendre symbols of
primes dividing d under which the conjecture holds. We also state
a conjecture for the quadratic field Q(

√
9c2 − 4) that is equivalent

to the Markoff conjecture for c.

1. Introduction
A triple (a, b, c) of positive integers that satisfies the Markoff equation

(1.1) a2 + b2 + c2 = 3abc

is called a Markoff triple; the numbers a, b, and c are called Markoff num-
bers. The Markoff conjecture states that the maximal element of a Markoff
triple uniquely determines the triple. In other words, if (a1, b1, c) and
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(a2, b2, c) are two Markoff triples with ai ≤ bi ≤ c, i = 1, 2, then a1 = a2
and b1 = b2. In this case c is said to be unique.

This conjecture has fascinated mathematicians for over 100 years now.
Markoff numbers made their first appearance in Markoff’s famous paper on
the least positive integer represented by an indefinite real binary quadratic
form [9]. While the proof of the conjecture still eludes us, it has been
settled in the case of Markoff numbers that are prime powers or two times
a prime power. The first few results on this conjecture are by Baragar [1]
for prime Markoff numbers and Button [4] and Schmutz [14] for those that
are prime powers or two times a prime power. Recently other proofs [8]
and [18] of this result have been given. We present here (Theorem 2.2) a
short and completely elementary proof of this same result that uses only
gcd considerations.

Many authors have proved uniqueness in special cases such as for example
when one of 3c− 2 or 3c+ 2 is a prime or a prime power as in [1] and [18].
J. Jimenez pointed out to the author yet another simple and short proof of
this result (Theorem 2.3). For more interesting results on Markoff numbers
and their generalizations, see Bombieri [2], Button [4], Zagier [16], Perrine
[11], Perrine[12] and Srinivasan [15].

Here we show that when d = 9c2 − 4 is odd, then c is unique if every
ambiguous class in the class group of Q(

√
d) that belongs to the principal

genus (see Definition 3.1), corresponds to a divisor of 3c − 2. As a result
we obtain criteria for uniqueness that are given in terms of the Legendre
symbols of the primes in d. In the particular case when 3c− 2 and 3c+ 2
are both products of two primes we give an explicit criterion in terms of
the four primes in d. As this criterion is applicable to cases where existing
criteria do not apply, our result extends the collection of unique Markoff
numbers.

It can be shown (see remark following the proof of Theorem 5.1) that
if a positive integer c is not a prime power, then c is a Markoff number
if and only if there is a form f(x, y) = nx2 + mxy + ly2 of discriminant
d that represents −p2 and q2, for some coprime pair of positive integers
p, q, both greater than 1 with c = pq. In Theorem 5.1 we show that if this
form is not ambiguous then c is unique. This observation leads us to our
uniqueness criterion (Theorem 5.4) and also enables us to state a conjecture
for the quadratic field Q(

√
9c2 − 4) (Conjecture 5.2) that is equivalent to

the Markoff conjecture for c: if p, q are coprime integers greater than 1 with
c = pq, then there is no ambiguous form of discriminant d that represents
both −p2 and q2.
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2. Elementary proofs
In this section we present elementary proofs of the Markoff conjecture in

the cases when c is a prime power or two times a prime power and when the
greatest odd divisor of either 3c+ 2 or 3c− 2 is a prime power. The proofs
use three simple properties of Markoff numbers, namely, the three integers
in every Markoff triple are mutually coprime, all odd Markoff numbers are
congruent to 1 modulo 4 and if c is an even Markoff number, then c is
congruent to 2 modulo 4 and 3c−2

4 and 3c+2
8 are odd integers. These results

may be proved in an elementary manner. In Section 4 we state these results
and give some alternative proofs. The following lemma is easy to verify.
Lemma 2.1. Let (a1, b1, c) and (a2, b2, c) be two Markoff triples. Then
(2.1) (a1a2 − b1b2)(a1b2 − b1a2) = c2(a1b1 − a2b2).
Theorem 2.2. If c is a Markoff number that is an odd prime power or two
times an odd prime power, then c is unique.
Proof. Let (a1, b1, c) and (a2, b2, c) be two Markoff triples with ai ≤ bi ≤ c
for i = 1, 2. Assume that a1b1−a2b2 = 0; then by Lemma 2.1 either a1a2 =
b1b2 or a1b2 = b1a2. Let a1a2 = b1b2. As gcd(a1, b1) = gcd(a2, b2) = 1 we
have a2 = b1 and b2 = a1. Similarly if a1b2 = b1a2 we have a2 = a1 and
b2 = b1. Hence a1b1 − a2b2 6= 0.

Let g > 2 be an odd prime divisor of c. We will show that g cannot
divide both a1a2 − b1b2 and a1b2 − b1a2. Assume on the contrary that
a1a2 ≡ b1b2 mod g and a1b2 ≡ b1a2 mod g. On multiplication of the two
congruences we obtain a2

1a2b2 ≡ b2
1a2b2 mod g. It follows that a2

1 ≡ b2
1

mod g as gcd(a2b2, c) = 1. However as g|a2
1 + b2

1 we have g|b1 which is not
true as gcd(c, b1) = 1. Therefore gcd(a1a2−b1b2, a1b2−b1a2, c

′) = 1, where
c′ = c when c is odd and c2 when c is even. (Note that as mentioned at the
begining of this section if c is even, then c2 is odd). Hence c = pq or 2pq,
depending on whether c is odd or even respectively where we have
(2.2) a1a2 − b1b2 ≡ 0 mod p2 and a1b2 − b1a2 ≡ 0 mod q2.

Now if c is an odd prime power or two times an odd prime power, we
conclude that one of p or q say q, is equal to 1. Therefore p = c or c2
depending on whether c is odd or even respectively.

If c is odd we have a1a2− b1b2 ≡ 0 mod c2. As ai, bi ≤ c, it follows that
a1a2 − b1b2 = 0 and hence a2 = b1 and b2 = a1 (as gcd(ai, bi) = 1), which
is not possible.

If c is even, then ai, bi are odd and as all odd Markoff numbers are
congruent to 1 modulo 4 (see begining of this section), we have a1a2−b1b2 ≡
0 mod 4. Also a1a2 − b1b2 ≡ 0 mod c24 (as p = c

2) and as c24 is odd (c ≡ 2
mod 4) it follows as in the case above, that a1a2 − b1b2 ≡ 0 mod c2 and
the proof is complete. �
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Theorem 2.3. Let c be a Markoff number such that the greatest odd divisor
of either 3c− 2 or 3c+ 2 is a prime power. Then c is unique.

Proof. Let (a1, b1, c) and (a2, b2, c) be two Markoff triples. Let Ai = ai+bi
2

and Bi = ai−bi
2 , for i = 1, 2. Then the Markoff equation (1.1) gives

(2.3) (2− 3c)A2
i + (2 + 3c)B2

i = −c2.

Subtracting the two equations for i = 1, 2 in (2.3) above we obtain
(2.4) (3c− 2)(A2

1 −A2
2) = (3c+ 2)(B2

1 −B2
2).

Suppose that c is odd and (3c + 2) is a power of a prime p. Assume
that p| gcd(2(A1 + A2), 2(A1 − A2)). Then p|A1 and from (2.3) we have
p|c, which is not possible. Therefore if 3c + 2 is a power of a prime then
3c+2|2(A1 +A2) or 2(A1−A2). However this is not possible if ai ≤ bi ≤ c,
since from (1.1) we have ab ≤ c, hence a ≤

√
c and therefore 3c + 2 ≤

2(A1 + A2) ≤ 2(c− 1) + 2
√
c. The case when 3c− 2 is a power of a prime

is dealt with similarly.
Now assume that c is even. Then as mentioned at the start of this

section, we have c is not divisible by 4 and 3c−2
4 and 3c+2

8 are odd integers.
It follows from (2.3) that 2Ai is even and hence ai, bi are odd. Therefore Ai
and Bi are integers and from (2.3) we have A1, A2 are odd integers. Since
Bi = Ai − bi the integers Bi are even.

Let 3c−2
4 be a prime power. From (2.3) we have

3c− 2
4

A2
1 −A2

2
3c+ 2

= B2
1 −B2

2
4

,

which is not possible if ai ≤ bi ≤ c, as then |B1+B2
2 | ≤ c2 .

The case when 3c+2
8 is a prime power is similar. �

3. Binary quadratic forms and ideals
Henceforth d ≡ 0 or 1 mod 4 will be an integer that is not a square and

R will be the unique quadratic order of discriminant d in K = Q(
√
d).

The reader may refer to [13], [6] or [10] for details on forms, ideals and
the correspondence between them.

3.1. Forms. A primitive binary quadratic form f = (a, b, c) of discrimi-
nant d is a function f(x, y) = ax2 +bxy+cy2, where a, b, c are integers with
b2 − 4ac = d and gcd(a, b, c) = 1. All forms considered here are primitive
binary quadratic forms and henceforth we shall refer to them simply as
forms.

Two forms f and f ′ are said to be equivalent, written as f ∼ f ′, if for

some A =
(
α β
γ δ

)
∈ SL2(Z) we have f ′(x, y) = f(αx + βy, γx + δy).

It is easy to see that ∼ is an equivalence relation on the set of forms of
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discriminant d. The equivalence classes form an abelian group called the
class group with group law given by composition of forms which follows
from the product formula for ideals given in the next section.

The identity form is defined as the form (1, 0, −d4 ) or (1, 1, 1−d
4 ) depending

on whether d is even or odd, respectively. In the case when d = 9c2 − 4 we
define e = (1,−3c, 1), which is equivalent to the identity form. (Note that
e(x+ 3c+1

2 y, y) = (1, 1, 1−d
4 ).) The inverse of f = (a, b, c), denoted by f−1,

is given by (a,−b, c).
A form f is said to represent an integer m if there exist coprime integers

x and y such that f(x, y) = m.
A form (a, b, c) is said to be ambiguous if a divides b. It follows then

that a divides d. Conversely, if d = rr′ with gcd(r, r′) = 1, then there is an
ambiguous form (r, x, y) with r|x. If (a, b, c) is an ambiguous form, we say
that it corresponds to the divisor |a| of d. An ambiguous class is one that
contains an ambiguous form.

The form −f = (−a, b,−c) is the negative of the form f = (a, b, c).

Definition 3.1. (Generic values) Let d ≡ 1 mod 4 have t distinct prime
divisors given by ri, i = 1, 2, · · · , t. Let f be a form andQ be the equivalence
class containing f . Let m with gcd(2d,m) = 1 be any integer represented
by f and let (mri ) denote the Legendre symbol. Then the t generic values
associated to Q or f are given by θi(Q) = θi(f) = (mri ), i = 1, 2, · · · , t. We
define θ(Q) = θ(f) = ((mr1 ), (mr2 ), · · · , (mrt )). The principal genus consists of
all classes Q (or forms f) with θ(Q) = (1, 1, · · · , 1).

It can be shown that the value of θ for a given class is independent of
the integer m represented.

3.2. Ideals. For details of the results presented in this section the reader is
directed to [6, Section 5.2 and 5.4.2]. A clear presentation of the arithmetic
of ideals is also available in [10, Sections 1.2 and 1.3].

A primitive integral ideal I of R can be written in the form

(3.1) I = aZ + −b+
√
d

2
Z,

where a, b are integers such that a > 0 is the norm of the ideal and 4a
divides b2 − d.

If c = b2−d
4a and gcd(a, b, c) = 1, then the ideal is invertible and the

inverse is the ideal I = aZ + b+
√
d

2 Z. Note that (a, b, c) = ax2 + bxy + cy2

is a form of discriminant d. Indeed the invertible ideals are the ideals that
correspond to forms.

Let F be the set of forms modulo the action of the group
{(

1 m
0 1

)
,m ∈ Z

}
,

where the forms (a, b, c) and (a, b+ 2am, c′) are identified. Let I be the set
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of fractional ideals modulo Q∗. Then a map ψ from F to I is defined as

ψ(a, b, c) =
{
aZ + −b+

√
d

2 Z, if a > 0
(aZ + −b+

√
d

2 Z)
√
d, if a < 0.

The map ψ induces a bĳection between the class group of forms and the
narrow class group of R, where two ideals I and J are strictly equivalent,
written as I ≈ J , if there are algebraic integers α and β such that αI = βJ
and where the norms of α and β are of the same sign. To establish the
bĳection induced by ψ it is necessary to consider for each ideal an ordered
basis w1Z + w2Z that satisfies w2w1 − w1w2 > 0, where w1 represents the
conjugate of w1. Two ideals are said to be equivalent, written as I ∼ J , if
the ideal equality given above holds without the norm condition.

Observe that if a > 0 and ψ(a, b, c) = I, then ψ(−a, b,−c) = I
√
d.

In the following definition we present the formula for the product of
ideals which leads to composition of forms.

Let Ik = akZ + −bk+
√
d

2 Z, k = 1, 2, be two primitive ideals. Let f1 =
(a1, b1, c1) and f2 = (a2, b2, c2) be the corresponding binary quadratic forms
of discriminant d.

Definition 3.2. Let g = gcd(a1, a2, (b1 +b2)/2) and let v1, v2, w be integers
such that

v1a1 + v2a2 + w(b1 + b2)/2 = g.

If we define a3 and b3 as

a3 = a1a2
g2 ,

b3 = b2 + 2 a2
g

(
b1 − b2

2
v2 − c2w

)
,

then I1 ·I2 is the ideal a3Z+ −b3+
√
d

2 Z. Further the composition of the forms
(a1, b1, c1) and (a2, b2, c2) is the form (a3, b3, c3), where c3 is computed using
the discriminant equation.

Note that this gives the multiplication in the class group.

3.3. Lemmas on binary quadratic forms.

Lemma 3.3. Let f be a form of positive discriminant d ≡ 1 mod 4.
(1) f ∼ f−1 if and only if f is equivalent to an ambiguous form.
(2) Let d be square-free. Then the number of ambiguous classes is equal

to 2t−1, where t is the number of distinct prime divisors of d.

Proof. If f is an ambiguous form then it follows immediately from Definition
3.2 that f ∼ f−1.

For the converse, let ψ(f) = I. Then I ≈ I. It can be shown (as for
example in [1, Lemma 2.3]) that there exists a primitive ideal J such that
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N(J) | d and I ∼ J . It follows that either I ≈ J or I ≈
√
dJ [7, page

197]. In either case f is equivalent to an ambiguous form as the forms
corresponding to the ideals J and

√
dJ are ambiguous.

For the details of part 2 the reader may refer to [13, page 143]. �

Lemma 3.4. Let f be a form that represents integers m and m′ with
gcd(mm′, 2d) = 1. Then for each odd prime divisor r of d we have (mr ) =
(m′r ).

Proof. See [13, page 139]. �

4. Properties of Markoff numbers
The following lemma is an easy consequence of Markoff’s early work [9]

where he showed that all Markoff triples can be generated from (1, 1, 1).
The reader may refer to [5, page 28] for a proof.

Lemma 4.1. If (a, b, c) is a Markoff triple, then gcd(a, b) = gcd(a, c) =
gcd(b, c) = 1.

In the next lemma we present some properties of Markoff numbers. Part
1 of the lemma follows from a classical result of numbers representable as a
sum of two coprime squares and hence is well known. A short proof of part
2 is given in [15] and an elementary proof for the last part can be found in
[17]; here we present alternative proofs for these two results.

Lemma 4.2. Let c be a Markoff number and d = 9c2 − 4.
(1) Every odd prime divisor of c is congruent to 1 modulo 4. If c is

even then c is not divisible by 4.
(2) Every odd prime divisor of d is congruent to 1 modulo 4.
(3) If c is even then 3c−2

4 and 3c+2
8 are odd integers.

Proof. Rewriting (1.1) as c(3ab− c) = a2 + b2, we see that c divides a sum
of two coprime squares and hence part 1 of the lemma follows.

As c is a Markoff number, the form e = (1,−3c, 1) represents −c2 (as
e(a, b) = −c2). Moreover it also represents 1. Therefore by Lemma 3.4, for
every odd prime r|d we have (−c2r ) = (1

r ), that is (−1
r ) = 1. Hence r ≡ 1

mod 4 and part 2 of the lemma follows.
Let c be even. It is clear from part 1 of the lemma that 3c−2

4 is odd.
As e(a, b) = −c2 and equivalent forms represent the same integers, the

identity form (1, 0,−9c2−4
4 ) represents −c2. Hence there exist coprime in-

tegers x, y such that x2− 9c2−4
4 y2 = −c2. As c is even, x is even and thus y

is odd. Looking at the above equation modulo 4 and by part 1, we deduce
that 9c2−4

32 is an odd integer and this concludes the proof of the lemma. �

The following theorem is proved in [1] and [3] in the case when c is odd.



764 Anitha Srinivasan

Theorem 4.3. A positive integer c is a Markoff number if and only if there
exists a pair of primitive principal ideals {(β), (β)} in R, where the norm
of β is −c2. Furthermore c is unique if and only if there exists exactly one
pair of such ideals.

Proof. Firstly recall that ψ is a bĳection from binary quadratic forms to
invertible integral ideals, where all forms considered are primitive. If (a, b, c)
is a Markoff triple, it follows from (1.1) that e(a, b) = −c2. As gcd(a, b) = 1

there exists A =
(
a β
b δ

)
∈ SL2(Z) and we have e(ax + βy, bx + δy) =

(−c2, B, l) = f . It follows that ψ(f) is a primitive principal ideal generated
by an element of norm −c2. Conversely if I is a primitive principal ideal
generated by an element of norm −c2 then ψ−1(I) = (−c2, B, l) is a form

that is equivalent to e. Hence there exists A =
(
a β
b δ

)
∈ SL2(Z) such that

e(ax + βy, bx + δy) = (−c2, B, l). It follows that e(a, b) = −c2 and hence
we obtain a Markoff triple (a, b, c). Now let (a1, b1, c) and (a2, b2, c) be two
Markoff triples that correspond as above to forms f1 = (−c2, b1, l1) and
f2 = (−c2, b2, l2). It can be shown using automorphisms of the form e that
if the two triples satisfy ai ≤ bi ≤ c, then b1 6≡ ±b2 mod 2c2. Therefore
ψ(f1) 6= ψ(f2) or ψ(f−1

2 ) and hence to each Markoff triple (a, b, c) with
a ≤ b ≤ c there corresponds a pair of primitive principal ideals as stated in
the theorem and the result follows. �

The following is also [1, Lemma 2.5] where the result is expressed in
terms of ideals.

Lemma 4.4. Let c be an odd Markoff number and d = 9c2 − 4. Let f be
an ambiguous form corresponding to a divisor r of 3c − 2. If f represents
an integer n with |n| <

√
d

2 , then |n| = r or 3c−2
r .

Proof. Let 3c − 2 = rr′ and f = (r, 3c − 2, r′). If f represents n, then
there is a form g = (n, l, k) that is equivalent to f . If ψ(f) = J and
ψ(|n|, l, k n|n|) = I then I ∼ J . The lemma follows on applying [1, Lemma

2.5], which states that if I ∼ J with N(I) <
√
d

2 and such that N(J) = r

divides 3c− 2, then N(I) = r or 3c−2
r . �

5. The uniqueness criterion
Let d = 9c2 − 4. All the forms considered in this section are of discrimi-

nant d and all ideals are in R, the unique quadratic order of discriminant
d in Q(

√
d). Note that for c 6= 1 the fundamental unit of the order R has

positive norm and hence an ideal generated by an element of negative norm
is not strictly equivalent to an ideal generated by an element of positive
norm.
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Theorem 5.1. Let c be a Markoff number that is not unique. Then there
exist coprime integers p, q greater than 1 with c = pq such that the following
equivalent statements hold.

(1) There exist primitive ideals I and J of norm p2 and q2 respectively,
such that J ≈ J ≈ I

√
d.

(2) There exists a form f with f ∼ f−1 such that f represents both −p2

and q2.

Proof. We will prove the statement for ideals first and then translate it via
the map ψ to statement 2 for forms.

If c is not unique then by Theorem 4.3 there exist two distinct pairs
of primitive principal ideals generated by elements of norm −c2. Let us
denote these ideals as

P1 = c2Z + −b1 +
√
d

2
Z, P2 = c2Z + −b2 +

√
d

2
Z.

Note that R ≈ P1
√
d ≈ P2

√
d. By the ideal condition 4c2|d − b2

i and
therefore b2

1 ≡ b2
2 mod 2c2. Moreover b1 6≡ ±b2 mod 2c2. Therefore as

gcd(c, bi) = 1, there exist coprime integers p, q greater than 1 with c = pq
such that

(5.1) b1 + b2 ≡ 0 mod 2p2, b1 − b2 ≡ 0 mod 2q2.

Let I = p2Z + −b1+
√
d

2 Z and J = q2Z + −b1+
√
d

2 Z. By Definition 3.2 and
(5.1), as p, q are coprime, we have IJ ≈ P1 and IJ = P2 and hence

R ≈ P1
√
d ≈ IJ

√
d ≈ P2

√
d ≈ IJ

√
d.

It follows that
J ≈ J ≈ I

√
d

and statement 1 follows.
To prove statement 2, let ci = b2i−d

4c2 and let f = (−p2, b1, q
2c1) and

g = (q2, b1, p
2c1). Then ψ(f) = I

√
d and ψ(g) = J . It follows from the

ideal equivalences in part 1 that f ∼ f−1 ∼ g and statement 2 follows.
To show that the second statement implies the first one, we simply

observe that if c is not unique, then there exist two inequivalent forms
(−c2, b1, w1) and (−c2, b2, w2) that are equivalent to the identity form and
that correspond via the map ψ mentioned in Section 3.2 to the ideals P1
and P2. �

Let c be an odd integer that is not a prime power. It follows from
Theorem 4.3 that c is a Markoff number if and only if there is a pair of
primitive principal ideals generated by elements of norm −c2. Using the
notation in the proof above, we have that c is a Markoff number if and only
if there are ideals P1, I and J such that IJ ≈ P1 and J ≈ I

√
d. It follows
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on using the equivalence given by ψ, as in the last paragraph of the proof,
that c is a Markoff number if and only if there is a form f that represents
−p2 and q2, where p, q are coprime integers greater than 1 such that c = pq.

The above theorem leads us to make the following conjecture about qua-
dratic fields.

Conjecture 5.2. Let p, q be coprime integers greater than 1 with c = pq.
Then the following equivalent statements hold.

(1) There does not exist a binary quadratic form f that represents both
−p2 and q2 and such that f ∼ f−1.

(2) There do not exist primitive ideals I and J of norms p2 and q2

respectively such that J ≈ J ≈ I
√
d.

Theorem 5.3. The Markoff conjecture for a Markoff number c that is
not a prime power is equivalent to Conjecture 5.2 for the quadratic field
Q(
√

9c2 − 4).

Proof. As in Theorem 5.1, we will prove the result for ideals and the result
for forms will follow on using the correspondence given by the map ψ.

From Theorem 5.1, if the conjecture for the quadratic field is true then
the Markoff conjecture is true. To prove the converse let I = p2Z+−b1+

√
d

2 Z
and J = q2Z + −b1+

√
d

2 Z be ideals as given in statement 2 of Conjecture
5.2. Then

R ≈ J2 ≈
√
dI · J ≈

√
dI · J.

Let P1 = I · J and P2 = I · J . Then from Definition 3.2 for the product of
ideals we obtain

Pi =
(
c2Z + −mi +

√
d

2
Z
)
, i = 1, 2,

for some integers mi where it can be verified that m1 6≡ ±m2 mod 2c2. It
follows from Theorem 4.3 that c is a Markoff number that is not unique. �

In the following theorem we present a criterion for uniqueness that follows
immediately from Theorem 5.1 and Lemma 4.4.

Theorem 5.4. (Uniqueness Criterion) Let c be an odd Markoff number.
Assume that every ambiguous form that belongs to a class in the principal
genus corresponds to a divisor of 3c− 2. Then c is unique.

Proof. If c is not unique, then by Theorem 5.1 there is a form f that
represents both −p2 and q2 such that f ∼ f−1. We assume without loss of
generality that p < q. By Lemma 3.3, f is equivalent to an ambiguous form
g. It follows that g represents −p2. Morever g is in the principal genus as it
represents a square q2. By assumption g corresponds to a divisor of 3c− 2
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and hence by Lemma 4.4 does not represent −p2 as p2 <
√
d

2 . Therefore c
is unique. �

6. Applications of the uniqueness criterion
The criterion given in Theorem 5.4 is made explicit in the following

theorem.

Theorem 6.1. Let c be an odd Markoff number. Assume that for every
0 < d1 <

√
d with d = d1d2, d1 - 3c − 2 and gcd(d1, d2) = 1, one of the

following is true.
(1) There exists a prime r|d1 such that (d2

r ) = −1.
(2) There exists a prime r|d2 such that (d1

r ) = −1.
Then c is unique.

Proof. Let f = (d1, d1r1,−c1) be the ambiguous form corresponding to
the divisor d1 of d. Let m = f(1, d2). Then gcd(m, 2d) = 1. If r is a
prime dividing d1, then (mr ) = ( c1r ) = (d2

r ). The last equality follows from
the discriminant equation d1r

2
1 + 4c1 = d2. If r|d2, then (mr ) = (d1

r ). It
follows that if any one of the above Legendre symbols is equal to −1, then
f belongs to a class that is not in the principal genus and hence c is unique
by Theorem 5.4. �

Example. Using Theorem 6.1 it can be shown that the Markoff conjecture
is true for c = 7561 as follows. There are 12 divisors of d that are less than√
d and that do not divide 3c− 2. We give below a list of these divisors d1

and the corresponding r in each case that satisfies one of the conditions in
the theorem.

d1 5 13 349 5 · 13 5 · 349 13 · 349 5 · 37 5 · 613 13 · 37
r 5 5 349 13 349 13 37 613 37

d1 13 · 613 37 · 349 5 · 13 · 37
r 613 349 5 .

In the following we consider the case when 3c − 2 and 3c + 2 are both
products of two odd primes.

Lemma 6.2. Let c be an odd Markoff number. Let 3c − 2 = r1r2 and
3c + 2 = r3r4. Assume that the integers ri are pairwise coprime. Then
the Jacobi symbols ( rirj ) are as given in the following table, where r, s, t ∈
{−1, 1}.
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( rirj ) r1 r2 r3 r4

r1 0 r s s
r2 r 0 s s
r3 s s 0 t
r4 s s t 0

Proof. Observe that by Lemma 4.2 all prime divisors of d are congruent
to 1 mod 4 and hence ( rirj ) = ( rjri ). Also (−1

r ) = 1 for any r|d. Let
f = (r1, r1r2,−r2). Let m = f(1, r3r4) and m′ = f(r3r4, 1). Then
gcd(2d,mm′) = 1. By Lemma 3.4 we have (mr3 ) = (m′r3 ). Note that
(mr3 ) = ( r1r3 ) and (m′r3 ) = ( r2r3 ). Therefore ( r1r3 ) = ( r2r3 ). Also since (3c−2

3c+2) = 1,
we have ( r1r3 ) = ( r2r4 ) and ( r2r3 ) = ( r1r4 ). Hence ( r1r3 ) = ( r1r4 ) = ( r2r3 ) = ( r2r4 ).

�

Lemma 6.3. Let c be an odd Markoff number. Let 3c − 2 = r1r2 and
3c + 2 = r3r4 where the ri are distinct primes. Then the generic values
of the ambiguous forms corresponding to the divisors r1, r3 and r1r3 are
respectively, (r, r, s, s), (s, s, t, t) and (rs, rs, st, st).

Proof. Let f = (r1, r1r2,−r2). If m = f(1, r3r4) then gcd(2d,m) = 1. For
the generic values of f we have (mr1 ) = r, (mr2 ) = r, (mr3 ) = s and (mr4 ) = s.
Hence θ(f) = (r, r, s, s).

Let g = (r3, r3φ,−ψ). As above if m = g(1, r1r2r4) then gcd(2d,m) = 1
and using the discriminant equation r3φ

2 + 4ψ = r1r2r4, we have (mr1 ) =
s, (mr2 ) = s, (mr3 ) = t and (mr4 ) = t. Thus θ(g) = (s, s, t, t).

For the generic values of the form h = (r1r3, r1r3φ,−ψ), we consider
m = h(1, r2r4) and using the discriminant equation r1r3φ

2 + 4ψ = r2r4, we
obtain θ(h) = (rs, rs, st, st). �

Theorem 6.4. Let c be an odd Markoff number. Let 3c − 2 = r1r2 and
3c + 2 = r3r4 where the ri are distinct primes. Then c is unique if one of
the following conditions is satisfied,

(1) ( r1r3 ) · ( r3r4 ) = −1.
(2) ( r1r3 ) = ( r3r4 ) = −1 and ( r1r2 ) = 1.

Proof. Firstly we observe that there are 8 ambiguous classes (Lemma 3.3),
namely, the classes containing ambiguous forms that correspond to the
divisors 1, r1, r3, and r1r3 and their negatives. If c is not unique, then by
Theorem 5.1 there is an ambiguous form g that represents −p2 and is in
the principal genus. It is easily verified using Lemma 6.3 that if any one of
the conditions given in the theorem is satisfied, then the ambiguous forms
corresponding to r3 and r1r3 belong to classes that are not in the principal
genus. Therefore g corresponds to the divisor 1 or r1. However by Lemma
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4.4 as p2 <
√
d

2 , an ambiguous form that corresponds to a divisor of 3c− 2
does not represent −p2. Therefore we conclude that c is unique. �

In the following example we apply Theorem 6.4 to a Markoff number
and demonstrate that some existing uniqueness criteria do not apply to
this number.

Example. Consider the Markoff number c = 9077. We have r1 = 73, r2 =
373, r3 = 113, r4 = 241. Also ( r1r3 ) = −1 and ( r3r4 ) = 1. Hence condition 1
of Theorem 6.4 is satisfied and so the Markoff conjecture is true for 9077.
To take an instance of an existing criterion, we consider one of the criteria
presented by Button [4], which is that if all ambiguous cycles are of length 2
or 4, then c is unique. Note that in this example, for the divisor 73·241 of d,
the length of the associated ambiguous cycle is 12 and hence this condition
does not apply. It is reasonable to assume that there are arbitrarily large
Markoff numbers of the kind in Theorem 6.4 and hence we have enlargened
the set of Markoff numbers for which the Markoff conjecture can be shown
to be true.
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