On the slopes of the U5 operator acting on overconvergent modular forms
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 165-182.

We show that the slopes of the U5 operator acting on 5-adic overconvergent modular forms of weight k with primitive Dirichlet character χ of conductor 25 are given by either

14·8i5:ior14·8i+45:i,

depending on k and χ.

We also prove that the space of classical cusp forms of weight k and character χ has a basis of eigenforms for the Hecke operators Tp and U5 which is defined over Q5(54,3).

Nous démontrons que les pentes de l’opérateur U5 agissant sur 5-adique formes modulaires surconvergentes de poids k avec caractère de Dirichlet primitif χ de conducteur 25 sont

14·8i5:iou14·8i+45:i.

Nous prouvons aussi que l’espace de forms parabolique de poids k et caractère χ a une base des formes propres pour les opérateurs de Hecke Tp et U5 définie sur Q5(54,3).

DOI : 10.5802/jtnb.620

L. J. P Kilford 1

1 Department of Mathematics Royal Fort Annexe University of Bristol BS8 1TW, United Kingdom
@article{JTNB_2008__20_1_165_0,
     author = {L. J. P Kilford},
     title = {On the slopes of the~${U_5}$ operator acting on overconvergent modular forms},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {165--182},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {1},
     year = {2008},
     doi = {10.5802/jtnb.620},
     zbl = {1211.11059},
     mrnumber = {2434162},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/}
}
TY  - JOUR
AU  - L. J. P Kilford
TI  - On the slopes of the ${U_5}$ operator acting on overconvergent modular forms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2008
SP  - 165
EP  - 182
VL  - 20
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/
DO  - 10.5802/jtnb.620
LA  - en
ID  - JTNB_2008__20_1_165_0
ER  - 
%0 Journal Article
%A L. J. P Kilford
%T On the slopes of the ${U_5}$ operator acting on overconvergent modular forms
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 165-182
%V 20
%N 1
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/
%R 10.5802/jtnb.620
%G en
%F JTNB_2008__20_1_165_0
L. J. P Kilford. On the slopes of the ${U_5}$ operator acting on overconvergent modular forms. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 165-182. doi : 10.5802/jtnb.620. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/

[1] W. Bosma, J. Cannon,C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24(3–4) (1997), 235–265. http://magma.maths.usyd.edu.au. | MR | Zbl

[2] K. Buzzard, Questions about slopes of modular forms. Astérisque 298 (2005), 1–15. | MR | Zbl

[3] K. Buzzard, F. Calegari, Slopes of overconvergent 2-adic modular forms. Compos. Math. 141(3) (2005), 591–604. | MR | Zbl

[4] K. Buzzard, L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3) (2005), 605–619. | MR | Zbl

[5] H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires. Lecture Notes in Mathematics 627 (1977), 69–78. | MR | Zbl

[6] R. Coleman, Classical and overconvergent modular forms of higher level. J. Théor. Nombres Bordeaux 9(2) (1997), 395–403. | EuDML | Numdam | MR | Zbl

[7] R. Coleman, p-adic Banach spaces and families of modular forms. Invent. Math 127 (1997), 417–479. | MR | Zbl

[8] R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3) (1996), 215–241. | MR | Zbl

[9] M. Emerton, 2-adic Modular Forms of minimal slope. PhD thesis, Harvard University, 1998.

[10] N. Katz, p-adic properties of modular forms and modular curves. Lecture Notes in Mathematics 350 (1973), 69–190. | MR | Zbl

[11] L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level. Math. Res. Lett. 11(5–6) (2004), 723–739. | MR | Zbl

[12] D. Loeffler, Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm050. | MR | Zbl

[13] T. Miyake, Modular Forms. Springer, 1989. | MR | Zbl

[14] K. Ribet, Galois representations attached to eigenforms with Nebentypus. Lecture Notes in Mathematics 601 (1977), 17–51. | MR | Zbl

[15] J.-P. Serre, Endomorphismes complètements continus des espaces de Banach p-adique Publ. Math. IHES 12 (1962), 69–85. | Numdam | MR | Zbl

[16] L. Smithline, Exploring slopes of p-adic modular forms. PhD thesis, University of California at Berkeley, 2000.

[17] L. Smithline, Compact operators with rational generation. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 287–294. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl

  • Lynnelle Ye Slopes in eigenvarieties for definite unitary groups, Compositio Mathematica, Volume 160 (2023) no. 1, pp. 52-89 | DOI:10.1112/s0010437x23007534 | Zbl:1548.11092
  • Ruochuan Liu; Nha Xuan Truong; Liang Xiao; Bin Zhao A local analogue of the ghost conjecture of Bergdall-Pollack, Peking Mathematical Journal, Volume 7 (2024) no. 1, pp. 247-344 | DOI:10.1007/s42543-023-00063-7 | Zbl:1534.11066
  • Bodan Arsovski On the reductions of certain two-dimensional crystalline representations, Documenta Mathematica, Volume 26 (2021), pp. 1929-1979 | DOI:10.25537/dm.2021v26.1929-1979 | Zbl:1483.11104
  • Bodan Arsovski On the reductions of certain two-dimensional crystabelline representations, Research in the Mathematical Sciences, Volume 8 (2021) no. 1, p. 50 (Id/No 12) | DOI:10.1007/s40687-020-00231-6 | Zbl:1470.11092
  • John Bergdall; Robert Pollack Slopes of Modular Forms and the Ghost Conjecture, International Mathematics Research Notices, Volume 2019 (2019) no. 4, p. 1125 | DOI:10.1093/imrn/rnx141
  • John Bergdall Upper bounds for constant slope p-adic families of modular forms, Selecta Mathematica. New Series, Volume 25 (2019) no. 4, p. 24 (Id/No 59) | DOI:10.1007/s00029-019-0505-8 | Zbl:1460.11058
  • Ruochuan Liu; Daqing Wan; Liang Xiao The eigencurve over the boundary of weight space, Duke Mathematical Journal, Volume 166 (2017) no. 9 | DOI:10.1215/00127094-0000012x
  • Daqing Wan; Liang Xiao; Jun Zhang Slopes of eigencurves over boundary disks, Mathematische Annalen, Volume 369 (2017) no. 1-2, pp. 487-537 | DOI:10.1007/s00208-016-1458-2 | Zbl:1427.11041
  • Kevin Buzzard; Toby Gee Slopes of modular forms, Families of automorphic forms and the trace formula. Proceedings of the Simons symposium, Puerto Rico, January 26 – February 1, 2014, Cham: Springer, 2016, pp. 93-109 | DOI:10.1007/978-3-319-41424-9_2 | Zbl:1408.11032
  • John Bergdall; Robert Pollack Arithmetic properties of Fredholm series for p-adic modular forms, Proceedings of the London Mathematical Society. Third Series, Volume 113 (2016) no. 4, pp. 419-444 | DOI:10.1112/plms/pdw031 | Zbl:1368.11042
  • David Roe The 3-adic eigencurve at the boundary of weight space, International Journal of Number Theory, Volume 10 (2014) no. 7, pp. 1791-1806 | DOI:10.1142/s1793042114500560 | Zbl:1311.11030
  • Abhishek Banerjee Hecke operators on line bundles over modular curves, Journal of Number Theory, Volume 132 (2012) no. 4, pp. 714-734 | DOI:10.1016/j.jnt.2011.11.001 | Zbl:1277.11036
  • L. J. P. Kilford; Ken Mcmurdy Slopes of the U7 operator acting on a space of overconvergent modular forms, LMS Journal of Computation and Mathematics, Volume 15 (2012), pp. 113-139 | DOI:10.1112/s1461157012000095 | Zbl:1294.11053
  • F. G. Garvan Congruences for Andrews spt-function modulo powers of 5,7 and 13, Transactions of the American Mathematical Society, Volume 364 (2012) no. 9, pp. 4847-4873 | DOI:10.1090/s0002-9947-2012-05513-9 | Zbl:1286.11165
  • L. J. P. Kilford On the Up operator acting on p-adic overconvergent modular forms when X0(p) has genus 1, Journal of Number Theory, Volume 130 (2010) no. 3, pp. 586-594 | DOI:10.1016/j.jnt.2009.10.003 | Zbl:1221.11113

Cité par 15 documents. Sources : Crossref, zbMATH