We show that the slopes of the
depending on
We also prove that the space of classical cusp forms of weight
Nous démontrons que les pentes de l’opérateur
Nous prouvons aussi que l’espace de forms parabolique de poids
@article{JTNB_2008__20_1_165_0, author = {L. J. P Kilford}, title = {On the slopes of the~${U_5}$ operator acting on overconvergent modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {165--182}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.620}, zbl = {1211.11059}, mrnumber = {2434162}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/} }
TY - JOUR AU - L. J. P Kilford TI - On the slopes of the ${U_5}$ operator acting on overconvergent modular forms JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 165 EP - 182 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/ DO - 10.5802/jtnb.620 LA - en ID - JTNB_2008__20_1_165_0 ER -
%0 Journal Article %A L. J. P Kilford %T On the slopes of the ${U_5}$ operator acting on overconvergent modular forms %J Journal de théorie des nombres de Bordeaux %D 2008 %P 165-182 %V 20 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/ %R 10.5802/jtnb.620 %G en %F JTNB_2008__20_1_165_0
L. J. P Kilford. On the slopes of the ${U_5}$ operator acting on overconvergent modular forms. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 165-182. doi : 10.5802/jtnb.620. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.620/
[1] W. Bosma, J. Cannon,C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24(3–4) (1997), 235–265. http://magma.maths.usyd.edu.au. | MR | Zbl
[2] K. Buzzard, Questions about slopes of modular forms. Astérisque 298 (2005), 1–15. | MR | Zbl
[3] K. Buzzard, F. Calegari, Slopes of overconvergent 2-adic modular forms. Compos. Math. 141(3) (2005), 591–604. | MR | Zbl
[4] K. Buzzard, L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3) (2005), 605–619. | MR | Zbl
[5] H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires. Lecture Notes in Mathematics 627 (1977), 69–78. | MR | Zbl
[6] R. Coleman, Classical and overconvergent modular forms of higher level. J. Théor. Nombres Bordeaux 9(2) (1997), 395–403. | EuDML | Numdam | MR | Zbl
[7] R. Coleman,
[8] R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3) (1996), 215–241. | MR | Zbl
[9] M. Emerton, 2-adic Modular Forms of minimal slope. PhD thesis, Harvard University, 1998.
[10] N. Katz,
[11] L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level. Math. Res. Lett. 11(5–6) (2004), 723–739. | MR | Zbl
[12] D. Loeffler, Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm050. | MR | Zbl
[13] T. Miyake, Modular Forms. Springer, 1989. | MR | Zbl
[14] K. Ribet, Galois representations attached to eigenforms with Nebentypus. Lecture Notes in Mathematics 601 (1977), 17–51. | MR | Zbl
[15] J.-P. Serre, Endomorphismes complètements continus des espaces de Banach
[16] L. Smithline, Exploring slopes of
[17] L. Smithline, Compact operators with rational generation. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 287–294. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
- Slopes in eigenvarieties for definite unitary groups, Compositio Mathematica, Volume 160 (2023) no. 1, pp. 52-89 | DOI:10.1112/s0010437x23007534 | Zbl:1548.11092
- A local analogue of the ghost conjecture of Bergdall-Pollack, Peking Mathematical Journal, Volume 7 (2024) no. 1, pp. 247-344 | DOI:10.1007/s42543-023-00063-7 | Zbl:1534.11066
- On the reductions of certain two-dimensional crystalline representations, Documenta Mathematica, Volume 26 (2021), pp. 1929-1979 | DOI:10.25537/dm.2021v26.1929-1979 | Zbl:1483.11104
- On the reductions of certain two-dimensional crystabelline representations, Research in the Mathematical Sciences, Volume 8 (2021) no. 1, p. 50 (Id/No 12) | DOI:10.1007/s40687-020-00231-6 | Zbl:1470.11092
- Slopes of Modular Forms and the Ghost Conjecture, International Mathematics Research Notices, Volume 2019 (2019) no. 4, p. 1125 | DOI:10.1093/imrn/rnx141
- Upper bounds for constant slope
-adic families of modular forms, Selecta Mathematica. New Series, Volume 25 (2019) no. 4, p. 24 (Id/No 59) | DOI:10.1007/s00029-019-0505-8 | Zbl:1460.11058 - The eigencurve over the boundary of weight space, Duke Mathematical Journal, Volume 166 (2017) no. 9 | DOI:10.1215/00127094-0000012x
- Slopes of eigencurves over boundary disks, Mathematische Annalen, Volume 369 (2017) no. 1-2, pp. 487-537 | DOI:10.1007/s00208-016-1458-2 | Zbl:1427.11041
- Slopes of modular forms, Families of automorphic forms and the trace formula. Proceedings of the Simons symposium, Puerto Rico, January 26 – February 1, 2014, Cham: Springer, 2016, pp. 93-109 | DOI:10.1007/978-3-319-41424-9_2 | Zbl:1408.11032
- Arithmetic properties of Fredholm series for
-adic modular forms, Proceedings of the London Mathematical Society. Third Series, Volume 113 (2016) no. 4, pp. 419-444 | DOI:10.1112/plms/pdw031 | Zbl:1368.11042 - The 3-adic eigencurve at the boundary of weight space, International Journal of Number Theory, Volume 10 (2014) no. 7, pp. 1791-1806 | DOI:10.1142/s1793042114500560 | Zbl:1311.11030
- Hecke operators on line bundles over modular curves, Journal of Number Theory, Volume 132 (2012) no. 4, pp. 714-734 | DOI:10.1016/j.jnt.2011.11.001 | Zbl:1277.11036
- Slopes of the
operator acting on a space of overconvergent modular forms, LMS Journal of Computation and Mathematics, Volume 15 (2012), pp. 113-139 | DOI:10.1112/s1461157012000095 | Zbl:1294.11053 - Congruences for Andrews spt-function modulo powers of
and , Transactions of the American Mathematical Society, Volume 364 (2012) no. 9, pp. 4847-4873 | DOI:10.1090/s0002-9947-2012-05513-9 | Zbl:1286.11165 - On the
operator acting on -adic overconvergent modular forms when has genus 1, Journal of Number Theory, Volume 130 (2010) no. 3, pp. 586-594 | DOI:10.1016/j.jnt.2009.10.003 | Zbl:1221.11113
Cité par 15 documents. Sources : Crossref, zbMATH