In recent years, starting with the paper [B-D-S], we have investigated the possibility of characterizing countable subgroups of the torus
Ces dernières années, depuis l’article [B-D-S], nous avons étudié la possibilité de caratériser les sous-groupes dénombrables du tore
@article{JTNB_2007__19_3_567_0, author = {Andr\'as Bir\'o}, title = {Characterizations of groups generated by {Kronecker} sets}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {567--582}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.603}, mrnumber = {2388789}, zbl = {1159.11022}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/} }
TY - JOUR AU - András Biró TI - Characterizations of groups generated by Kronecker sets JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 567 EP - 582 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/ DO - 10.5802/jtnb.603 LA - en ID - JTNB_2007__19_3_567_0 ER -
%0 Journal Article %A András Biró %T Characterizations of groups generated by Kronecker sets %J Journal de théorie des nombres de Bordeaux %D 2007 %P 567-582 %V 19 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/ %R 10.5802/jtnb.603 %G en %F JTNB_2007__19_3_567_0
András Biró. Characterizations of groups generated by Kronecker sets. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 567-582. doi : 10.5802/jtnb.603. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/
[A-N] J. Aaronson, M. Nadkarni,
[B] M. Beiglbock, Strong characterizing sequences of countable groups. Preprint, 2003 | MR
[Bi1] A. Biró, Characterizing sets for subgroups of compact groups I.: a special case. Preprint, 2004
[Bi2] A. Biró, Characterizing sets for subgroups of compact groups II.: the general case. Preprint, 2004
[B-D-S] A. Biró, J-M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of R/Z. Studia Sci. Math. Hung. 38 (2001), 97–113. | MR | Zbl
[B-S] A. Biró, V.T. Sós, Strong characterizing sequences in simultaneous diophantine approximation. J. of Number Theory 99 (2003), 405–414. | MR | Zbl
[B-S-W] M. Beiglbock, C. Steineder, R. Winkler, Sequences and filters of characters characterizing subgroups of compact abelian groups. Preprint, 2004 | MR | Zbl
[D-K] D. Dikranjan, K. Kunen, Characterizing Subgroups of Compact Abelian Groups. Preprint 2004 | Zbl
[D-M-T] D. Dikranjan, C. Milan, A. Tonolo, A characterization of the maximally almost periodic Abelian groups. J. Pure Appl. Alg., to appear. | Zbl
[E] E. Effros, Transformation groups and
[H-M-P] B. Host, J.-F. Mela, F. Parreau, Non singular transformations and spectral analysis of measures. Bull. Soc. Math. France 119 (1991), 33–90. | Numdam | MR | Zbl
[L-P] L. Lindahl, F. Poulsen, Thin sets in harmonic analysis. Marcel Dekker, 1971 | MR | Zbl
[N] M.G. Nadkarni, Spectral Theory of Dynamical Systems. Birkhauser, 1998 | MR | Zbl
[V] N.Th. Varopoulos, Groups of continuous functions in harmonic analysis. Acta Math. 125 (1970), 109–154. | MR | Zbl
- Group topologies on the integers generated by sequences, Topology and its Applications, Volume 364 (2025), p. 28 (Id/No 109102) | DOI:10.1016/j.topol.2024.109102 | Zbl:1560.11014
- An introduction to
-characterized subgroups of the circle, Topology and its Applications, Volume 371 (2025), p. 44 (Id/No 109366) | DOI:10.1016/j.topol.2025.109366 | Zbl:8066775 - Reflexive group topologies on the integers generated by sequences, Topology and its Applications, Volume 343 (2024), p. 18 (Id/No 108796) | DOI:10.1016/j.topol.2023.108796 | Zbl:1543.22001
- Factorizable subgroups of the circle group, Topology and its Applications, Volume 323 (2023), p. 10 (Id/No 108283) | DOI:10.1016/j.topol.2022.108283 | Zbl:1511.54021
- Mackey groups and Mackey topologies, Dissertationes Mathematicae, Volume 567 (2021), pp. 1-141 | DOI:10.4064/dm835-7-2021 | Zbl:1518.22001
- Generating subgroups of the circle using a generalized class of density functions, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 3, pp. 598-618 | DOI:10.1016/j.indag.2020.10.004 | Zbl:1483.11016
- Statistically characterized subgroups of the circle, Fundamenta Mathematicae, Volume 249 (2020) no. 2, pp. 185-209 | DOI:10.4064/fm690-8-2019 | Zbl:1453.22003
- Characterized subgroups of the circle group, Ricerche di Matematica, Volume 67 (2018) no. 2, pp. 625-655 | DOI:10.1007/s11587-018-0393-9 | Zbl:1405.54017
- On the Borel complexity of characterized subgroups, Topology and its Applications, Volume 201 (2016), pp. 372-387 | DOI:10.1016/j.topol.2015.12.048 | Zbl:1348.22006
- Polish LCA groups are strongly characterizable, Topology and its Applications, Volume 162 (2014), pp. 66-75 | DOI:10.1016/j.topol.2013.11.010 | Zbl:1283.22003
- On characterized subgroups of compact abelian groups, Topology and its Applications, Volume 160 (2013) no. 18, pp. 2427-2442 | DOI:10.1016/j.topol.2013.07.037 | Zbl:1280.22003
- Characterizable groups: Some results and open questions, Topology and its Applications, Volume 159 (2012) no. 9, pp. 2378-2391 | DOI:10.1016/j.topol.2011.11.060 | Zbl:1245.22005
- On T-sequences and characterized subgroups, Topology and its Applications, Volume 157 (2010) no. 18, pp. 2834-2843 | DOI:10.1016/j.topol.2010.09.002 | Zbl:1221.22009
Cité par 13 documents. Sources : zbMATH