Weighted uniform densities
Journal de Théorie des Nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 191-204.

Nous introduisons la notion de densité uniforme pondé- rée (supérieure et inférieure) d’une partie A de N * , par rapport à une suite de poids (a n ). Ce concept généralise la notion classique de la densité uniforme (pour laquelle les poids sont tous égaux à 1). Nous démontrons un théorème de comparaison de deux densités uniformes (ayant des suites de poids différentes) et un théorème de comparaison d’une densité pondérée uniforme et d’une densité pondérée classique (asymptotique ; non uniforme). Comme conséquence, nous obtenons un nouveau majorant et un nouveau minorant pour l’ensemble des α-densités (classiques) d’une partie A de N * .

We introduce the concept of uniform weighted density (upper and lower) of a subset A of * , with respect to a given sequence of weights (a n ). This concept generalizes the classical notion of uniform density (for which the weights are all equal to 1). We also prove a theorem of comparison between two weighted densities (having different sequences of weights) and a theorem of comparison between a weighted uniform density and a weighted density in the classical sense. As a consequence, new bounds for the set of (classical) α–densities of A are obtained.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.581
Mots clés : weighted uniform density, uniform density, weighted density, α–density.
@article{JTNB_2007__19_1_191_0,
     author = {Rita Giuliano Antonini and Georges Grekos},
     title = {Weighted uniform densities},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {191--204},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {1},
     year = {2007},
     doi = {10.5802/jtnb.581},
     zbl = {1128.11005},
     mrnumber = {2332061},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.581/}
}
Rita Giuliano Antonini; Georges Grekos. Weighted uniform densities. Journal de Théorie des Nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 191-204. doi : 10.5802/jtnb.581. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.581/

[1] R. Alexander, Density and multiplicative structure of sets of integers. Acta Arithm. 12 (1976), 321–332. | MR 211979 | Zbl 0189.04404

[2] T. C. Brown - A. R. Freedman, Arithmetic progressions in lacunary sets. Rocky Mountain J. Math. 17 (1987), 587–596. | MR 908265 | Zbl 0632.10052

[3] T. C. Brown - A. R. Freedman, The uniform density of sets of integers and Fermat’s last theorem. C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1–6. | Zbl 0701.11011

[4] R. Giuliano Antonini - M. Paštéka, A comparison theorem for matrix limitation methods with applications. Uniform Distribution Theory 1 no. 1 (2006), 87–109.

[5] C. T. Rajagopal, Some limit theorems. Amer. J. Math. 70 (1948), 157–166. | MR 23930 | Zbl 0041.18301

[6] P. Ribenboim, Density results on families of diophantine equations with finitely many solutions. L’Enseignement Mathématique 39, (1993), 3–23. | Zbl 0804.11026

[7] H. Rohrbach - B. Volkmann, Verallgemeinerte asymptotische Dichten. J. Reine Angew. Math. 194 (1955), 195 –209. | MR 70647 | Zbl 0064.28003

[8] T. Šalát - V. Toma, A classical Olivier’s theorem and statistical convergence. Annales Math. Blaise Pascal 10 (2003), 305–313. | Numdam | Zbl 1061.40001