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Weighted uniform densities

par Rita GIULIANO ANTONINI et Georges GREKOS

Résumé. Nous introduisons la notion de densité uniforme pondé-
rée (supérieure et inférieure) d’une partie A de N∗, par rapport à
une suite de poids (an). Ce concept généralise la notion classique
de la densité uniforme (pour laquelle les poids sont tous égaux à 1).
Nous démontrons un théorème de comparaison de deux densités
uniformes (ayant des suites de poids différentes) et un théorème
de comparaison d’une densité pondérée uniforme et d’une densité
pondérée classique (asymptotique ; non uniforme). Comme consé-
quence, nous obtenons un nouveau majorant et un nouveau mino-
rant pour l’ensemble des α−densités (classiques) d’une partie A
de N∗.

Abstract. We introduce the concept of uniform weighted den-
sity (upper and lower) of a subset A of N∗, with respect to a given
sequence of weights (an). This concept generalizes the classical
notion of uniform density (for which the weights are all equal to
1). We also prove a theorem of comparison between two weighted
densities (having different sequences of weights) and a theorem of
comparison between a weighted uniform density and a weighted
density in the classical sense. As a consequence, new bounds for
the set of (classical) α–densities of A are obtained.

1. Introduction

The uniform upper and lower densities of a subset A of N∗ are defined
respectively by

lim
h→∞

lim sup
n→∞

card{k ∈ A,n + 1 ≤ k ≤ n + h}
h

,

lim
h→∞

lim inf
n→∞

card{k ∈ A,n + 1 ≤ k ≤ n + h}
h

.

The notion of uniform density is currently used and the first aim is generally
to prove that the limits of limsup and liminf exist: see for instance [2], [3],

Manuscrit reçu le 9 janvier 2006.
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[6], [8] as references on this topic. Notice that, setting

card{k ∈ A,n + 1 ≤ k ≤ n + h} =
∑

n+1≤k≤n+h
k∈A

1; h =
∑

n+1≤k≤n+h

1,

the above ratio takes the form∑
n+1≤k≤n+h

k∈A
ak∑n+h

k=n+1 ak

,

where ak = 1 for every integer k, and the corresponding upper and lower
densities reveal now their nature of “weighted” uniform densities with con-
stant “weights” equal to 1.

Hence the problem of looking for a “general” definition of weighted uni-
form density (i.e., with a not necessarily constant sequence of weights (an))
becomes quite natural. Such a definition is given in section 2 of the present
paper; moreover, in Theorem (2.13) we prove that, under some very gen-
eral conditions on the defining sequence (an), every A ⊆ N∗ has upper and
lower weighted uniform a–densities.

In section 3 the problem of comparing two such weighted uniform densi-
ties is studied. A general theorem of comparison is proved (Theorem (3.5)).
Such a result is natural if one looks at the analogous well known result on
weighted but non uniform densities (also studied for instance in [1] and [7])
proved in [5] (see also [4] for a recent extension).

Section 4 is devoted to the comparison between a weighted uniform and
a weighted but not uniform density. The main result of this section is The-
orem (4.5), which reveals the astonishing fact that it is possible to compare
any weighted density with any uniform weighted density (provided some
very general assumptions are satisfied, of course).

By specializing Theorem (4.5) in the case of α–densities, we obtain a
result that provides new bounds (i.e., different in principle from the trivial
ones 0 and 1) for the set of α–densities (upper and lower) of a given set A.

We wish to thank the anonymous referee and Pierre Liardet for helpful
suggestions in the presentation of our results.

2. Weighted uniform density

Let a = (an)n≥1 be a sequence of non-negative real numbers. For any
n ∈ N, h ∈ N∗, put

Sn,h
.=

n+h∑
k=n+1

ak.

For simplicity we set Sn
.= S0,n, and we assume that

lim
n→∞

Sn = +∞.
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For every subset A of N∗, put now

1A(k) =

{
1 if k ∈ A,
0 if k ∈ Ac,

and for every pair of integers n, h,

sn,h(A) .=
∑

n+1≤k≤n+h
k∈A

ak =
n+h∑

k=n+1

ak1A(k).

(2.1) Definition. Let A ⊆ N∗ and assume that the two limits

ua(A) .= lim
h→∞

lim sup
n→∞

sn,h(A)
Sn,h

, ua(A) .= lim
h→∞

lim inf
n→∞

sn,h(A)
Sn,h

exist; then ua(A) and ua(A) are called respectively the upper and the lower
uniform density of A with respect to the weight sequence (an) (or, more
briefly, uniform a–densities).

It is immediate that A has a lower (resp. upper) uniform a–density if
and only if Ac has an upper (resp. lower) uniform a–density and that

(2.2) ua(A) = 1− ua(Ac).

The following assumption will be an essential tool in the sequel:

(2.3) for every fixed integer q ≥ 1, lim
r→∞

sup
n∈N

Sn+rq,q

Sn,rq
= 0.

Note that (2.3) holds if (an) is not increasing, since in this case

Sn+rq,q =
n+(r+1)q∑
k=n+rq+1

ak ≤ q an+rq+1 =
rq

r
an+rq+1 ≤

1
r

n+rq∑
k=n+1

ak =
1
r
Sn,rq.

We now investigate another relevant situation in which (2.3) holds.

(2.4) Proposition. Assume that

(i) there exist two strictly positive constants C1 ≤ C2 such that, for every
pair of integers n ≥ 0 and h ≥ 1, the following bounds hold

(2.5) C1 h an+h ≤ Sn,h ≤ C2 h an+h;

(ii)

(2.6) sup
n,r,q

an+(r+1)q

an+rq
= M < +∞,

where the sup is taken over n ∈ N, r ∈ N∗, q ∈ N∗.
Then (2.3) holds (uniformly in q).
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Proof. It is straightforward, since, from (2.5) and (2.6) we get, for every q,
r, n,

Sn+rq,q

Sn,rq
≤ C2

C1

1
r

an+(r+1)q

an+rq
≤ M

C2

C1

1
r
.

�

A case in which (2.6) holds is exhibited in the following result.

(2.7) Proposition. Assumption (2.6) holds if (an) is increasing and

sup
n∈N∗

a2n

an
= H < +∞.

In such a case, we have M ≤ H.

Proof. For every q, r, n,

an+(r+1)q ≤ a2n+2rq ≤ Han+rq.

�

The following proposition concerns a case in which (2.5) holds. Let α be
a real number, α > −1, and consider the sequence an = nα.

(2.8) Proposition. (i) Let α ≥ 0. Then, given a pair of integers n ≥ 0 and
h ≥ 1, we have the inequalities

(2.9)
1

α + 1
h(n + h)α ≤

n+h∑
k=n+1

kα ≤ h(n + h)α.

(ii) Let −1 < α < 0. Then, given a pair of integers n ≥ 0 and h ≥ 1, we
have the inequalities

(2.10) h(n + h)α ≤
n+h∑

k=n+1

kα ≤ 1
α + 1

h(n + h)α.

Proof. The second (resp. first) inequality in (2.9) (resp. (2.10)) is immediate
since k 7→ kα is increasing (resp. decreasing). For the first (resp. second)
one, notice that

n+h∑
k=n+1

kα ≥
∫ n+h

n
tαdt (resp.

n+h∑
k=n+1

kα ≤
∫ n+h

n
tαdt),

hence it is enough to prove that the same inequality holds for the integral
above. The statement in the proposition can be reformulated as follows
(immediate proof):



Weighted uniform densities 195

(2.11) Lemma. (i) Let α ≥ 0. Then for every pair of positive real numbers
x, y with x ≤ y, we have

(y − x)yα ≤ yα+1 − xα+1.

(ii) Let −1 < α < 0. Then for every pair of positive real numbers x, y with
x ≤ y, we have

(y − x)yα ≥ yα+1 − xα+1.

�

(2.12) Remark. For −1 < α ≤ 0, an = nα is not increasing; thus, part (ii)
of the above proposition is of no utility in this section. We have included it
for future reference (see Remark (3.4)).

We now state our main result.

(2.13) Theorem. Assume that the sequence (an) is such that (2.3) holds.
Then, given a subset A of N∗,
(i) the two limits

lim
h→∞

lim inf
n→∞

sn,h(A)
Sn,h

, lim
h→∞

lim sup
n→∞

sn,h(A)
Sn,h

exist;
(ii) the following relations hold

(2.14) lim
h→∞

lim inf
n→∞

sn,h(A)
Sn,h

= sup
h

lim inf
n→∞

sn,h(A)
Sn,h

,

(2.15) lim
h→∞

lim sup
n→∞

sn,h(A)
Sn,h

= inf
h

lim sup
n→∞

sn,h(A)
Sn,h

.

Proof. We put for simplicity

lh
.= lim inf

n→∞
sn,h(A)

Sn,h
, Lh

.= lim sup
n→∞

sn,h(A)
Sn,h

.

With these notations, formulas (2.14) and (2.15) take the forms

lim
h→∞

lh = sup
h∈N∗

lh, lim
h→∞

Lh = inf
h∈N∗

Lh

and are an immediate consequence of Lemma (2.16) below.

(2.16) Lemma. Let δ > 0 be fixed. Then there exist two integers n0 and
h0 such that, for every n > n0 and every h > h0, we have

lq − 2δ ≤ sn,h(A)
Sn,h

≤ Lq + 2δ.
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Proof of Lemma (2.16). Since A is fixed, we shall adopt the simplified no-
tation sn,h in place of sn,h(A). It will be enough to prove the right inequality
above. By the definition of Lq, there exists an integer n0 (depending on q
of course) such that

(2.17) ∀n > n0,
sn,q

Sn,q
< Lq + δ .

Assumption (2.3) implies that there exists an r0 such that

(2.18) ∀ r > r0 , ∀n ∈ N∗,
Sn+rq,q

Sn,rq
< δ .

Put now h0 = (r0 + 1)q and let h be any fixed integer, with h > h0. Then
h = rq + p, where r and p are two integers satisfying the relations r > r0

and 0 ≤ p < q. After these preliminaries, we are ready to give the required
estimation of

sn,h

Sn,h
, n > n0, h > h0.

We can write

sn,h =
r−1∑
j=0

sn+jq,q + sn+rq,p.

Since n + jq ≥ n > n0 (j = 0, 1, . . . , r − 1), by (2.17) sn,h is not greater
than

(Lq + δ)
r−1∑
j=0

Sn+jq,q + Sn+rq,q = (Lq + δ)Sn,rq + Sn+rq,q,

and dividing by Sn,h (h = rq + p ≥ rq), we get
sn,h

Sn,h
≤ (Lq + δ)

Sn,rq

Sn,h
+

Sn+rq,q

Sn,h
≤ (Lq + δ) +

Sn+rq,q

Sn,rq
= Lq + 2δ,

where we have used relation (2.18) since r > r0. �

3. Comparing two uniform weighted densities

In this section we suppose that (an) and (bn) are two sequences of non-
negative real numbers. For (an) the notations and assumptions will be as
in Theorem (2.13). Analogous notations will be in force for (bn); more
precisely, for every pair of integers n and h, we put

Tn,h
.=

n+h∑
k=n+1

bk

and, for every subset A of N∗,

tn,h(A) .=
∑

n+1≤k≤n+h
k∈A

bk =
n+h∑

k=n+1

bk1A(k).
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For simplicity we set Tn
.= T0,n. Suppose that

lim
n→∞

Tn = +∞.

We assume in addition that there exist two strictly positive constants D1 ≤
D2 such that, for every pair of integers n ≥ 0 and h ≥ 1, the following
bounds

(3.1) D1 h bn+h ≤ Tn,h ≤ D2 h bn+h

hold; moreover

(3.2) sup
n,r,q

bn+(r+1)q

bn+rq
= N < +∞,

(where the supremum is taken over n ∈ N, r ∈ N∗, q ∈ N∗) and

(3.3) sup
h

lim sup
n→∞

bn

bn+h
= R < +∞.

(3.4) Remark. (i) We recall that assumptions (3.1) and (3.2) guarantee
that (2.3) holds (see Proposition (2.4)), hence the definitions of ub(A) and
ub(A) make sense.
(ii) As to the validity of assumption (3.1) in the case of weights bn = nα

(α > −1), we refer to Proposition (2.8) and Remark (2.12).
(iii) Assumption (3.3) holds trivially if

lim sup
n

bn

bn+1
= l ≤ 1.

Since A will be fixed throughout, in the sequel we shall write more simply
sn,h, ua, ua instead of sn,h(A), ua(A), ua(A) respectively. The analogous
shortened notations tn,h, ub, ub will be used in place of tn,h(A), ub(A), ub(A)
respectively.

Assume now that an 6= 0 for all n and define the sequence (cn) by

∀n ∈ N∗, cn=̇
bn

an
.

We prove the following result.

(3.5) Theorem. Assume that (cn)n is not increasing. Then

ua ≤ ub ≤ ub ≤ ua.

Proof. By relation (2.2), it is enough to prove the part concerning upper
densities, i.e., the inequality

(3.6) ub ≤ ua.
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The following auxiliary result can be easily deduced from Lemma (2.16).

(3.7) Lemma. For any fixed ε > 0, there exist two integers n0 and h0 such
that, for every n > n0 and every h > h0, we have

(3.8) ua − ε ≤ sn,h

Sn,h
≤ ua + ε.

Let now ε be fixed, and choose n0 and h0 such that (3.8) holds (n > n0,
h > h0). For every fixed n > n0 + h0 consider the two sequences

s′k
.= sn−h0,k−n+h0 ,

S′k
.= Sn−h0,k−n+h0

defined for k ≥ n− h0 + 1. Notice that, if k > n, we have k − n + h0 > h0.
Since n− h0 > n0, Lemma (3.7) yields

(3.9) ∀ k > n , ua − ε ≤ s′k
S′k

≤ ua + ε ;

moreover

(3.10) ∀ k ≥ n− h0 + 2 , ak1A(k) = s′k − s′k−1 .

Then, for every h ∈ N∗, (3.10) gives

tn,h =
n+h∑

k=n+1

ck(ak1A(k)) =
n+h∑

k=n+1

ck

(
s′k −s′k−1

)
=

n+h∑
k=n+1

cks
′
k −

n+h−1∑
k=n

ck+1s
′
k

=
n+h−1∑
k=n+1

(ck − ck+1)s′k + cn+hs′n+h − cn+1s
′
n,

(3.11)

and analogously

(3.12) Tn,h =
n+h−1∑
k=n+1

(ck − ck+1)S′k + cn+hS′n+h − cn+1S
′
n.

Now, take h > h0.
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Since (cn) is not increasing, by (3.9) the second member in (3.11) is not
greater than

(ua + ε)
( n+h−1∑

k=n+1

(ck − ck+1)S′k + cn+hS′n+h

)
− cn+1S

′
n(ua − ε)

= (ua + ε)
( n+h−1∑

k=n+1

(ck − ck+1)S′k + cn+hS′n+h − cn+1S
′
n

)
+ (ua − ua + 2ε)cn+1S

′
n = (ua + ε)Tn,h + (ua − ua + 2ε)cn+1S

′
n ,

where in the last equality we have used relation (3.12).
Dividing by Tn,h gives, for h > h0,

(3.13)
tn,h

Tn,h
≤ (ua + ε) + (ua − ua + 2ε)cn+1

S′n
Tn,h

.

We now prove that

(3.14) lim
h→∞

lim sup
n→∞

cn+1
S′n
Tn,h

= 0 .

Indeed, note that (cn) is not increasing, so that cn+1 ≤ ck for k ≤ n + 1
and, for every h ∈ N∗,

cn+1
S′n
Tn,h

= cn+1
Sn−h0,h0

Tn,h
= cn+1

∑n+1
k=n−h0+1 ak

Tn,h

≤
∑n+1

k=n−h0+1 bk

Tn,h
=

Tn−h0,h0

Tn,h
≤ C2

C1

h0

h

bn

bn+h
,

by assumption (3.1). We thus get (3.14) using assumption (3.3).
Relation (3.14), used in (3.13), easily yields (3.6) (by passing to the

lim supn and after to the limh), since ε is arbitrary. �

In some particular cases, it is possible to compare the uniform a–densities
of a set A with its classical uniform densities u0(A) and u0(A) (obtained
for bn = 1 = n0, n ∈ N∗). More precisely we prove the following result.

(3.15) Theorem. For every n ≥ 0 and h ≥ 1 put

mn,h = min
n+1≤k≤n+h

ak; Mn,h = max
n+1≤k≤n+h

ak.

Assume that

lim sup
h→∞

lim sup
n→∞

Mn,h

mn,h

.= σ < +∞.
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Note that σ ≥ 1. Then, for every A ⊆ N∗ such that ua(A) (resp. ua(A))
exists,

(3.16) ua(A) ≤ σu0(A) (resp. ua(A) ≥ σ−1u0(A)).

Proof. We prove only the first relation in (3.16). Let A(x) = card A∩ [1, x]
be the counting function of the set A; then

ua(A) = lim
h→∞

lim sup
n→∞

sn,h(A)
Sn,h

≤ lim sup
h→∞

lim sup
n→∞

Mn,h

mn,h

A(n + h)−A(n)
h

≤ σu0(A).

�

(3.17) Remark. The particular case σ = 1 is worth being pointed out,
since in this situation there is equality between ua(A) and u0(A) (resp.
ua(A) and u0(A)). The relation σ = 1 holds for instance in the case of
weights an = nα (and, more generally, for a sequence of weights which is
the restriction to N∗ of a regularly varying monotone function defined on
[1,+∞)).

(3.18) Remark. The following examples show that a uniform weighted
density does not always coincide with the classical uniform one. Denote by
E the set of even integers; as it is well known, u0(E) = u0(E) (= u0(E)) =
1/2.
(i) Consider the sequence ak = 1+1E(k). It is easy to see that the uniform
a–density of E (upper and lower) is equal to the number 2/3.
(ii) Let b > 1 be fixed, and put ak = bk. It is an easy exercise to see that
the uniform upper (resp. lower) a–density of the set E is equal to b/(b + 1)
(resp. 1/(b + 1) ). Observe that the sequence of weights considered in this
example does not verify condition (2.3).

4. Comparing a weighted density and a uniform weighted
density

Let (an) and (bn) be two sequences of strictly positive real numbers. In
particular the sequence (cn), with cn

.= bn/an is defined. With the notations
of the previous sections, assume that, for every fixed integer N , the following
relations hold

(4.1) (i) lim
n→∞

Sn,N

N an
= 1; (ii) lim

n→∞
Tn,N

N bn
= 1;

(4.2) ∀h ∈ N∗, lim
n→∞

Sn,h

Sn
= 0;
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put
m(N)

n
.= min

n+1≤k≤n+N
ck;

then

(4.3) lim
n→∞

m
(N)
n

cn
= 1.

(4.4) Remark. (i) Assumption (4.3) holds if (cn) is monotone and

lim
n→∞

cn+1

cn
= 1.

(ii) The whole set of assumptions is verified for an = nα and bn = nβ, with
α ≥ −1 and β ≥ −1.

Recall that the upper and lower a–densities of the set A ⊆ N∗ are defined
respectively as

da(A) .= lim sup
n→∞

s0,n(A)
Sn

; da(A) .= lim inf
n→∞

s0,n(A)
Sn

.

We shall again omit the reference to the set A in each of the following
notations and statements (A being fixed throughout).

The main result of this section is the following theorem.

(4.5) Theorem. If the two sequences (an) and (bn) verify the assumptions
(4.1), (4.2) and (4.3), then

ub ≤ da ≤ da ≤ ub.

Let α ≥ −1 be fixed. By applying the above result to the two sequences

ak = kα, bk = 1 = k0,

we get the next corollary.

(4.6) Corollary. For every α ≥ −1, we have the relations

u0 ≤ dα ≤ dα ≤ u0.

(4.7) Remark. Recall (see [5]) that the function α 7→ dα(A) (resp. α 7→
dα(A)) is increasing (resp. decreasing). Hence Corollary (4.6) yields

lim
α→∞

dα(A) = sup
α

dα(A) ≤ u0(A);

(resp. lim
α→∞

dα(A) = inf
α

dα(A) ≥ u0(A)).

It is an open problem to establish in which cases the equality sign holds
in the two relations above.
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Proof of Theorem (4.5).

Let 0 < ε < 1 be fixed. There exist two integers h1 and n0 such that

(4.8) ∀n > n0,
tn,h1

Tn,h1

≤ ub + ε

(see Lemma (3.7)).
Put

r1 =
[n0

h1

]
+ 1.

Note that r1h1 > n0.
For every j ≥ r1 we have jh1 ≥ r1h1 > n0 so that, by (4.8),

(4.9) tjh1,h1 ≤ (ub + ε)Tjh1,h1 , j ≥ r1.

For the same ε, by the assumptions (4.1), (4.2) and (4.3), there exists an
integer r̃ such that, for every j ≥ r̃, all the following inequalities hold

(4.10)


Tjh1,h1 < (1 + ε)h1bjh1 ;
(1− ε)h1ajh1 < Sjh1,h1 < (1 + ε)h1ajh1 ;
m

(h1)
jh1

> (1− ε)cjh1 .

We now put r0
.= max{r̃, r1}. Let n be any integer. Then n can be written

in the form n = rnh1 + pn, where 0 ≤ pn < h1. Obviously

(4.11) lim
n→∞

rn = +∞;

moreover, if n ≥ (r0 + 1)h1, then

(4.12) rn ≥ r0 + 1

(in fact the inequality n = rnh1 + pn ≥ (r0 + 1)h1 is equivalent to

rn ≥ (r0 + 1)− (pn/h1) > r0,

i.e., rn ≥ r0 + 1 since rn and r0 are integers).
For every integer n we have

(4.13) Sn =
rn−1∑
j=0

Sjh1,h1 + Srnh1,pn ≥
rn−1∑
j=0

Sjh1,h1 .

In a similar way, for n ≥ (r0 + 1)h1 (recall relation (4.12))

(4.14) s0,n =
r0−1∑
j=0

sjh1,h1 +
rn−1∑
j=r0

sjh1,h1 + srnh1,pn .

Now, for every j = r0, . . . , rn − 1,
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sjh1,h1 =
(j+1)h1∑
k=jh1+1

ak1A(k) =
(j+1)h1∑
k=jh1+1

c−1
k bk1A(k) ≤ 1

m
(h1)
jh1

tjh1,h1

≤ (ub + ε)
Tjh1,h1

m
(h1)
jh1

,(4.15)

where, in the last inequality, relation (4.9) has been used (since j ≥ r0 ≥ r1).
By inserting (4.15) (summed from r0 to rn − 1) into (4.14), we get

s0,n ≤ M + (ub + ε)
( rn−1∑

j=r0

Tjh1,h1

m
(h1)
jh1

)
+ Srnh1,h1 ,

where we have put for simplicity M =
∑r0−1

j=0 sjh1,h1 . Dividing now the
above relation by Sn and recalling (4.13) gives (for n ≥ (r0 + 1)h1)

s0,n

S0,n
≤ M∑rn−1

j=0 Sjh1,h1

+ (ub + ε)

∑rn−1
j=r0

Tjh1,h1

m
(h1)

jh1∑rn−1
j=0 Sjh1,h1

+
Srnh1,h1∑rn−1

j=0 Sjh1,h1

= An + (ub + ε)Bn + Cn.(4.16)

Now

(4.17) lim
n→∞

An = lim
n→∞

M∑rn−1
j=0 Sjh1,h1

= lim
n→∞

M

Srnh1

= 0

by relation (4.11) and the basic assumption limn→∞ Sn = ∞ (see section
2).

Recalling the inequalities (4.10) (which hold for every j ≥ r̃ and hence
for every j ≥ r0 ≥ r̃) we deduce

(4.18) Bn ≤

∑rn−1
j=r0

(1+ε)h1bh1j

(1−ε)ch1j∑rn−1
j=r0

(1− ε)h1ah1j

=
1 + ε

(1− ε)2
;

and last

Cn =
Srnh1,h1∑rn−1

j=0 Sjh1,h1

=
Srnh1,h1

Srnh1

,

whence, by (4.2) and (4.11),

(4.19) lim
n→∞

Cn = 0.

Using relations (4.17), (4.18) and (4.19) in (4.16), the statement follows by
the arbitrariness of ε. �
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