Le théorème de Skolem-Noether pour les modules sur des anneaux principaux
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 511-516.

Soit k un anneau principal et M un k-module de torsion de type fini. Nous donnons une preuve élémentaire du fait que tout automorphisme de k-algèbre de R=End k M est intérieur.

Let k be a principal ideal domain and M a torsion k-module of finite type. We give an elementary proof of the fact that any k-algebra automorphism of R=End k M is inner.

@article{JTNB_2005__17_2_511_0,
     author = {Anne Cortella and Jean-Pierre Tignol},
     title = {Le th\'eor\`eme de Skolem-Noether pour les modules sur des anneaux principaux},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {511--516},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.504},
     zbl = {1092.13011},
     mrnumber = {2211304},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.504/}
}
Anne Cortella; Jean-Pierre Tignol. Le théorème de Skolem-Noether pour les modules sur des anneaux principaux. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 511-516. doi : 10.5802/jtnb.504. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.504/

[B1] R. Baer, Automorphism rings of primary abelian operator groups. Ann. Math. 44 (1943), 192–227. | MR 8241 | Zbl 0061.05405

[B2] R. Baer, Linear algebra and projective geometry. Academic Press (1952). | MR 52795 | Zbl 0049.38103

[F1] L. Fuchs, Infinite abelian groups, vol. 1. Academic Press (1970). | MR 255673 | Zbl 0209.05503

[F2] L. Fuchs, Infinite abelian groups, vol. 2. Academic Press (1973). | MR 349869 | Zbl 0257.20035

[G] R. Goebel, Endomorphism rings of abelian groups. Lecture notes in math. 1006 (1983), 340–353. | MR 722628 | Zbl 0516.20032

[I] I.M. Isaacs, Automorphisms of matrix algebras over commutative rings. Linear. Alg. Appli. 31 (1980), 215–231. | MR 570392 | Zbl 0434.16015

[K1] I. Kaplansky, Some results on abelian groups. Proc. Nat. Acad. Sci. USA 38 (1952), 538–540. | MR 49189 | Zbl 0047.25804

[K2] I. Kaplansky, Infinite abelian groups. Univ. Michigan Press (1954) ; rev. ed. 1969. | MR 233887 | Zbl 0194.04402

[Kn] M.-A. Knus, Algebres d’azumaya et modules projectifs. Commen. Math. Helv. 45 (1970), 372–383. | Zbl 0205.34203

[L1] T.Y. Lam, A first course in non-commutative rings. Springer-Verlag (1991). | MR 1125071 | Zbl 0728.16001

[L2] T.Y. Lam, Modules with isomorphic multiples and rings with isomorphic matrix rings, a survey. Monographies de l’enseign. math., Genève 35 (1999). | Zbl 0962.16002

[L3] T.Y. Lam, Exercises in Classical Ring Theory. Springer-Verlag (1995). | MR 1323431 | Zbl 0823.16001

[M] A.V. Mikhalev, Isomorphisms and anti-isomorphisms of endomorphism rings of modules. Proc. first international Tainan-Moscow alg. workshop, Berlin (1996). | MR 1443438 | Zbl 0881.16017

[RZ] A. Rosenberg, D. Zelinsky, Automorphisms of separable algebras, Pacif. J. Math. 11 (1961), 1109–1117. | MR 148709 | Zbl 0116.02501

[Thz] J. Thevenaz, G-algebras and modular representation theory. Oxford Sc. Publi. (1995). | MR 1365077 | Zbl 0837.20015

[W] K.G. Wolfson, Anti-isomorphisms of endomorphism rings of locally free modules. Math. Z. 202 (1989), 1951–1959. | MR 1013081 | Zbl 0655.16016