Counting cyclic quartic extensions of a number field
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 475-510.

Nous donnons des formules asymptotiques pour le nombre d’extensions cycliques quartiques d’un corps de nombres général.

In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.

@article{JTNB_2005__17_2_475_0,
     author = {Henri Cohen and Francisco Diaz y Diaz and Michel Olivier},
     title = {Counting cyclic quartic extensions of a number field},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {475--510},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.503},
     zbl = {1090.11068},
     mrnumber = {2211303},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.503/}
}
TY  - JOUR
AU  - Henri Cohen
AU  - Francisco Diaz y Diaz
AU  - Michel Olivier
TI  - Counting cyclic quartic extensions of a number field
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 475
EP  - 510
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.503/
UR  - https://zbmath.org/?q=an%3A1090.11068
UR  - https://www.ams.org/mathscinet-getitem?mr=2211303
UR  - https://doi.org/10.5802/jtnb.503
DO  - 10.5802/jtnb.503
LA  - en
ID  - JTNB_2005__17_2_475_0
ER  - 
Henri Cohen; Francisco Diaz y Diaz; Michel Olivier. Counting cyclic quartic extensions of a number field. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 475-510. doi : 10.5802/jtnb.503. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.503/

[1] S. Bosca, Comparing orders of Selmer groups. Jour. Théo. Nomb. Bordeaux 17 (2005), 467–473. | Numdam | MR 2211302 | Zbl 05016569

[2] H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Math. 193, Springer-Verlag, 2000. | MR 1728313 | Zbl 0977.11056

[3] H. Cohen, High precision computation of Hardy–Littlewood constants, preprint available on the author’s web page.

[4] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree, J. reine angew. Math. 550 (2002), 169–209. | MR 1925912 | Zbl 1004.11063

[5] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields, Indag. Math. (N.S.) 14 (2003), 183–196. | MR 2026813 | Zbl 1056.11058

[6] H. Cohen, F. Diaz y Diaz, M. Olivier, Counting biquadratic extensions of a number field, preprint.

[7] H. Cohen, F. Diaz y Diaz, M. Olivier, Counting discriminants of number fields, submitted.

[8] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions, J. reine angew. Math. 386 (1988), 116–138. | MR 936994 | Zbl 0632.12007

[9] J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants, C. R. Acad. Sci. Paris 340 (2005), 411–414. | Zbl 1083.11069

[10] S. Mäki, On the density of abelian number fields, Thesis, Helsinki, 1985. | MR 791087 | Zbl 0566.12001

[11] S. Mäki, The conductor density of abelian number fields, J. London Math. Soc. (2) 47 (1993), 18–30. | MR 1200974 | Zbl 0727.11041

[12] G. Malle, On the distribution of Galois groups, J. Number Th. 92 (2002), 315–329. | MR 1884706 | Zbl 1022.11058

[13] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129–135. | MR 2068887 | Zbl 02119347

[14] D. J. Wright, Distribution of discriminants of Abelian extensions, Proc. London Math. Soc. (3) 58 (1989), 17–50. | MR 969545 | Zbl 0628.12006

Cité par Sources :