Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.
Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.
@article{JTNB_2002__14_2_603_0, author = {Alfred J. Van der Poorten}, title = {Symmetry and folding of continued fractions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {603--611}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1067.11001}, mrnumber = {2040696}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/} }
TY - JOUR AU - Alfred J. Van der Poorten TI - Symmetry and folding of continued fractions JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 603 EP - 611 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/ LA - en ID - JTNB_2002__14_2_603_0 ER -
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 603-611. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
[1] FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | MR | Zbl
, , ,[2] Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | MR | Zbl
,[3] Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | MR | Zbl
,[4] Folded continued fractions. J. Number Theory 40 (1992), 237-250. | MR | Zbl
, ,