Symmetry and folding of continued fractions
Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 603-611.

Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.

Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.

@article{JTNB_2002__14_2_603_0,
     author = {Alfred J. Van der Poorten},
     title = {Symmetry and folding of continued fractions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {603--611},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     zbl = {1067.11001},
     mrnumber = {2040696},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/}
}
TY  - JOUR
AU  - Alfred J. Van der Poorten
TI  - Symmetry and folding of continued fractions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
SP  - 603
EP  - 611
VL  - 14
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
LA  - en
ID  - JTNB_2002__14_2_603_0
ER  - 
%0 Journal Article
%A Alfred J. Van der Poorten
%T Symmetry and folding of continued fractions
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 603-611
%V 14
%N 2
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
%G en
%F JTNB_2002__14_2_603_0
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 603-611. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/

[1] F.M. Dekking, M. Mendès France, A.J. Van Der Poorten, FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | MR | Zbl

[2] M. Mendès France, Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | MR | Zbl

[3] M. Mendès France, Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | MR | Zbl

[4] A.J. Van Der Poorten, J. Shallit, Folded continued fractions. J. Number Theory 40 (1992), 237-250. | MR | Zbl