The identical equation for multiplicative functions established by R. Vaidyanathaswamy in the case of Dirichlet convolution in 1931 has been generalized to multiplicativity preserving -convolutions satisfying certain conditions (cf. [7]) which can be called as Lehmer-Narkiewicz convolutions for some reasons. In this paper we prove the converse.
Dans le cadre de la convolution de Dirichlet des fonctions arithmétiques, R. Vaidyanathaswamy a obtenu en 1931 une formule de calcul de valable pour toute fonction multiplicative et tout couple d’entiers positifs et . Dans [7], cette formule a été généralisée aux -convolutions appelées convolutions de Lehmer-Narkiewicz, qui, entre autres, conservent la multiplicativité. Dans cet article, nous démontrons la réciproque.
@article{JTNB_2002__14_2_561_0, author = {Jean-Louis Nicolas and Varanasi Sitaramaiah}, title = {On a class of $\psi $-convolutions characterized by the identical equation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {561--583}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1071.11007}, mrnumber = {2040694}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_561_0/} }
TY - JOUR AU - Jean-Louis Nicolas AU - Varanasi Sitaramaiah TI - On a class of $\psi $-convolutions characterized by the identical equation JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 561 EP - 583 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_561_0/ LA - en ID - JTNB_2002__14_2_561_0 ER -
%0 Journal Article %A Jean-Louis Nicolas %A Varanasi Sitaramaiah %T On a class of $\psi $-convolutions characterized by the identical equation %J Journal de théorie des nombres de Bordeaux %D 2002 %P 561-583 %V 14 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_561_0/ %G en %F JTNB_2002__14_2_561_0
Jean-Louis Nicolas; Varanasi Sitaramaiah. On a class of $\psi $-convolutions characterized by the identical equation. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 561-583. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_561_0/
[1] Arithmetical functions associated with the unitary divisors of an integer. Math. Z. 74 (1960), 66-80. | EuDML | MR | Zbl
,[2] Arithmetic of double series. Trans. Amer. Math. Soc. 33 (1931), 945-957. | JFM | MR | Zbl
,[3] On a class of arithmetical convolutions. Colloq. Math. 10 (1963), 81-94. | EuDML | MR | Zbl
,[4] On the ψ-product of D. H. Lehmer. Indian J. Pure and Appl. Math. 16 (1985), 994-1008. | Zbl
,[5] On the existence of unity in Lehmer's ψ-product ring. Indian J. Pure and Appl. Math. 20 (1989), 1184-1190. | Zbl
,[6] On a class of ψ-products preserving multiplicativity. Indian J. Pure and Appl. Math. 22 (1991), 819-832. | Zbl
, ,[7] The identical equation in ψ-products. Proc. Amer. Math. Soc. 124 (1996), 361-369. | Zbl
, ,[8] On regular ψ-convolutions. J. Indian Math. Soc. 64 (1997), 131-150. | Zbl
, ,[9] The identical equation of the multiplicative functions. Bull. Amer. Math. Soc. 36 (1930), 762-772. | JFM
,[10] The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc. 33 (1931), 579-662. (=[11], 326-414.) | JFM | MR | Zbl
,[11] The collected papers of Prof. R. Vaidyanathaswamy. Madras University, 1957. | MR
,