It is shown that the methods established in [HKN3] can be effectively used to study polynomial cycles in certain rings. We shall consider the rings and shall describe polynomial cycles in the case when is either odd or twice a prime.
On montre que la méthode développée dans [HKN3] peut être appliquée pour l’étude des cycles polynomiaux dans certains anneaux, notamment les anneaux pour lesquels nous décrivons les cycles polynomiaux lorsque est impair ou le double d’un nombre premier.
@article{JTNB_2002__14_2_529_0, author = {W{\l}adys{\l}aw Narkiewicz}, title = {Polynomial cycles in certain rings of rationals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {529--552}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1071.11017}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_529_0/} }
TY - JOUR AU - Władysław Narkiewicz TI - Polynomial cycles in certain rings of rationals JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 529 EP - 552 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_529_0/ LA - en ID - JTNB_2002__14_2_529_0 ER -
Władysław Narkiewicz. Polynomial cycles in certain rings of rationals. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 529-552. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_529_0/
[A1] Diophantine equations related to finite groups. Comm. Algebra 4 (1976), 77-100. | MR | Zbl
,[A2] On the diophantine equation 1 + 2α = 3b5c + 2d3e5f. Math. Comp. 44 (1985), 267-278. | Zbl
,[AF1] On the diophantine equation 1 + pa =2b + 2cpd. Rocky Mount. J. Math. 15 (1985), 739-761. | MR | Zbl
, ,[AF2] On the diophantine equation 1 + x + y = z. Rocky Mount. J. Math. 22 (1992), 11-62. | MR | Zbl
, ,[Ba] User's Guide to PARI-GP, Bordeaux 1994.
, , , ,[Ca] On the equation ax - by = 1. Amer. J. Math. 75 (1953), 159-162. | MR | Zbl
,[Co] The Diophantine equation x2 + 3 = yn. Glasgow Math. J. 35 (1993), 203-206. | MR | Zbl
,[Da] Kant V4. J. Symbolic Comput. 24 (1997), 267-283. | MR | Zbl
, , , , , , ,[HKN1] Polynomial cycles in finitely generated domains. Monatsh. Math. 119 (1995), 275-279. | EuDML | MR | Zbl
, ,[HKN2] Polynomial cycles and dynamical units. Proc. Conf. Analytic and Elementary Number Theory, 70-80, Wien, 1996. | Zbl
, ,[HKN3] Scarcity of finite polynomial orbits. Publ. Math. Debrecen 56 (2000), 405-414. | MR | Zbl
, ,[Le] On a problem of Störmer. Illinois J. Math. 8 (1964), 57-79. | MR | Zbl
,[Len] Euclidean number fields of large degree. Invent. Math. 38 (1977), 237-254. | MR | Zbl
,[LN] On cliques of exceptional units and Lenstra's construction of Euclidean fields. Number Theory, Lecture Notes in Math. 1380, 150-178, Springer, 1989. | MR | Zbl
, ,[MDT] TIJDEMAN, Exponential diophantine equations with four terms. Indag. Math.(N.S.) 3 (1992), 47-57. | MR | Zbl
[Mo] Arithmetic properties of periodic points of quadratic maps, II. Acta Arith. 87 (1998), 89-102. | MR | Zbl
,[N1] Polynomial Mappings. Lecture Notes in Math. 1600, Springer, 1995. | MR | Zbl
,[NP] Finite polynomial orbits in finitely generated domains. Monatsh. Math. 124 (1997), 309-316. | MR | Zbl
, ,[Pe] Polynomial cycles in certain local domains. Acta Arith. 66 (1994), 11-22. | MR | Zbl
,[Pi] On the equation 2x - 3y = 2X + 3Y. Bull. Calcutta Math. Soc. 37 (1945), 15-20. | Zbl
,[Sch] S-units equations over number fields. Invent. Math. 102 (1990), 95-107. | MR | Zbl
,[Sc] On the equation px - by = c and ax + by = cz. J. Number Theory 44 (1993), 153-165. | MR | Zbl
,[Si] Sur une question concernant le nombre de diviseurs premiers d'un nombre naturel. Colloq. Math. 6 (1958), 209-210. | MR | Zbl
,[Sk] On the diophantine equation apx +bqy = c + dpz qw. J. Number Theory 35 (1990), 194-207. | MR | Zbl
,[St] Quelques théorèmes sur l'équation de Pell x2 - Dy2 = ±1 et leurs applications. Skr. Vidensk.-selsk. (Christiania) I, Mat. Naturv. Kl. (1897), no.2, 1-48.
,[TW] Sums of products of powers of given prime numbers. Pacific J. Math. 132 (1988), 177-193; corr. ibidem 135 (1988), 396-398. | MR | Zbl
, ,[Wa] A theorem on prime powers. Eureka 19 (1957), 10-11. | MR
,[Wg] Four terms equations. Indag. Math. 51 (1989), 355-361. | MR | Zbl
,