In the first part of the paper we prove that the Zeckendorf sum-of-digits function
Nous montrons que la fonction æsomme de chiffresÆ de Zeckendorf
@article{JTNB_2002__14_2_439_0, author = {Michael Drmota and Wolfgang Steiner}, title = {The {Zeckendorf} expansion of polynomial sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {439--475}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1077.11005}, mrnumber = {2040687}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_439_0/} }
TY - JOUR AU - Michael Drmota AU - Wolfgang Steiner TI - The Zeckendorf expansion of polynomial sequences JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 439 EP - 475 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_439_0/ LA - en ID - JTNB_2002__14_2_439_0 ER -
%0 Journal Article %A Michael Drmota %A Wolfgang Steiner %T The Zeckendorf expansion of polynomial sequences %J Journal de théorie des nombres de Bordeaux %D 2002 %P 439-475 %V 14 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_439_0/ %G en %F JTNB_2002__14_2_439_0
Michael Drmota; Wolfgang Steiner. The Zeckendorf expansion of polynomial sequences. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 439-475. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_439_0/
[1] Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353-361. | MR | Zbl
, ,[2] Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). | Numdam | MR | Zbl
,[3] Sur les fonctions q-additives ou q-multiplicatives. Acta Arith. 21 (1972), 285-298. | MR | Zbl
,[4] Central limit theorem for nonstationary Markov chains II. Theory Prob. Applications 1 (1956), 329-383. (Translated from: Teor. Vareojatnost. i Primenen. 1 (1956), 365-425.) | MR | Zbl
,[5] The distribution of patterns in digital expansions. In: Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch and R. F. Tichy eds.), de Gruyter, Berlin, 2000, 103-121. | MR | Zbl
,[6] The joint distribution of q-additive functions. Acta Arith. 100 (2001), 17-39. | MR | Zbl
,[7] Irregularities of Distributions with Respect to Polytopes. Mathematika, 43 (1996), 108-119. | MR | Zbl
,[8] Functional Limit Theorems for Digital Expansions. Acta Math. Hung., to appear, | MR | Zbl
, , ,[9] Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer Verlag, Berlin, 1998. | MR | Zbl
, ,[10] Systèmes de numération et fonctions fractales relatifs aux substitutions. J. Theoret. Comput. Sci. 65 (1989), 153-169. | MR | Zbl
, ,[11] Gaussian asymptotic properties of the sum-of digits functions. J. Number Th. 62 (1997), 19-38. | MR | Zbl
, ,[12] Représentation des nombres réels sur la base du nombre d'or, Application aux nombres de Fibonacci. Prix Fermat Junior 1999, Quadrature 39 (2000).
,[13] α-expansions, linear recurrences and the sum-of-digits function. Manuscripta Math. 70 (1991), 311-324. | Zbl
, ,[14] Additive Theory of Prime Numbers. Translations of Mathematical Monographs Vol. 13, Am. Math. Soc., Providence, 1965. | MR | Zbl
,[15] On the convergence of moments in the central limit theorem for nonhomogeneous Markov chains. Theory Prob. Applications 20 (1975), 741-758. (Translated from: Teor. Vareojatnost. i Primenen. 20 (1975), 755-772.) | MR | Zbl
,[16] Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413-430. | MR | Zbl
,[17] Sums of digits obey the Strassen law. In: Proceedings of the 38-th Conference of the Lithuanian Mathematical Society, R. Ciegis et al (Eds), Technika,, Vilnius, 1997, 33-38.
,[18] Nombres normaux. Applications aux fonctions pseudo-aléatoires. J. Analyse Math. 20 (1967) 1-56. | MR | Zbl
,[19] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477-493. | MR | Zbl
,[20] The method of trigonometrical sums in the theory of numbers. Interscience Publishers, London. | Zbl
,[21] Minorations de combinaisons tineaires de logarithmes de nombres algébriques. Can. J. Math. 45 (1993), 176-224. | MR | Zbl
,