Let denote the modular group . In this paper it is proved that . The exponent improves the exponent obtained by W. Z. Luo and P. Sarnak.
Soit . On démontre que où l’exposant améliore l’exposant précédemment obtenu par W. Z. Luo et P. Sarnak.
@article{JTNB_2002__14_1_59_0, author = {Yingchun Cai}, title = {Prime geodesic theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--72}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {1}, year = {2002}, zbl = {1028.11030}, mrnumber = {1925990}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_59_0/} }
Yingchun Cai. Prime geodesic theorem. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 1, pp. 59-72. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_59_0/
[1] The character sums estimate with r = 3. J. London. Math. Soc.(2) 33 (1986), 219-226. | MR | Zbl
,[2] The Selberg Trace Formula for PSL(2, R), I. Lecture Notes in Math. 548, Berlin- New York, 1976. | Zbl
,[3] The Selberg Trace Formula and the Riemann Zeta-function. Duke Math. J. 43 (1976), 441-482. | MR | Zbl
,[4] Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II. Math. Ann. 142 (1961), 385-398 and 143 (1961), 463-464. | MR | Zbl
,[5] Prime geodesic theorem. J. Reine Angew. Math. 349 (1984), 136-159. | MR | Zbl
,[6] Introduction to the Spectral Theory of Automorphic Forms. Biblioteca de la Revista Matemática Iberoamericana, 1995 | MR | Zbl
,[7] An arithmetical form of the Selberg Trace formula and the distribution of the norms of primitive hyperbolic classes of the modular group. Akad. Nauk. SSSR., Khabarovsk, 1978. | Zbl
,[8] The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums (Russian). Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334-383, 479. | MR | Zbl
,[9] Quantum ergodicity of eigenfunctions on PSL2(Z)\H2. Inst. Hautes. Etudes Sci. Publ. Math. 81 (1995), 207-237. | Numdam | Zbl
, ,[10] On Selberg's eigenvalue Conjecture. Geom. Funct. Anal. 5 (1995), 387-401. | MR | Zbl
, , ,[11] Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. Proc. Cambridge. Phil. Soc. 35 (1939), 351-372. | Zbl
,[12] Class number of infinitely binary quadratic forms. J. Number Theory 15 (1982), 229-247. | MR | Zbl
,[13] Spectral theory of automorphic functions, (in Russian). Trudy Math. Inst. Steklova 153 (1981), 1-171. | MR | Zbl
,