Let be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields with mixed signature having power integral bases and containing as a subfield. We also determine all generators of power integral bases in . Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for
Soit un corps quadratique réel. Nous donnons un algorithme rapide pour déterminer tous les corps quartiques diédraux avec signature mixte, monogènes (i.e. ayant des bases d’entiers ) et contenant comme sous-corps. Nous déterminons également tous les générateurs des bases dans ayant cette forme. Notre algorithme combine un résultat récent de Kable [9] avec l’algorithme de Gaál, de Pethö et de Pohst [6], [7]. On applique la méthode à
@article{JTNB_2001__13_1_137_0, author = {Istv\'an Ga\'al and G\'abor Nyul}, title = {Computing all monogeneous mixed dihedral quartic extensions of a quadratic field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {137--142}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, zbl = {1065.11086}, mrnumber = {1838076}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_137_0/} }
TY - JOUR AU - István Gaál AU - Gábor Nyul TI - Computing all monogeneous mixed dihedral quartic extensions of a quadratic field JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 137 EP - 142 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_137_0/ LA - en ID - JTNB_2001__13_1_137_0 ER -
%0 Journal Article %A István Gaál %A Gábor Nyul %T Computing all monogeneous mixed dihedral quartic extensions of a quadratic field %J Journal de théorie des nombres de Bordeaux %D 2001 %P 137-142 %V 13 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_137_0/ %G en %F JTNB_2001__13_1_137_0
István Gaál; Gábor Nyul. Computing all monogeneous mixed dihedral quartic extensions of a quadratic field. Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 1, pp. 137-142. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_137_0/
[1] Solving Thue equations of high degree. J. Number Theory 60 (1996), 373-392. | MR | Zbl
, ,[2] KANT V4. J. Symbolic Comp. 24 (1997), 267-283. | MR | Zbl
, , , , , ,[3] On the resolution of index form equations in biquadratic number fields, I. J. Number Theory 38 (1991), 18-34. | MR | Zbl
, , ,[4] On the resolution of index form equations in biquadratic number fields, II. J. Number Theory 38 (1991), 35-51. | Zbl
, , ,[5] On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case. J. Number Theory 53 (1995), 100-114. | MR | Zbl
, , ,[6] On the resolution of index form equations in quartic number fields. J. Symbolic Computation 16 (1993), 563-584. | MR | Zbl
, , ,[7] Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields. J. Number Theory 57 (1996), 90-104. | MR | Zbl
, , ,[8] On the resolution of index form equations in dihedral number fields. J. Experimental Math. 3 (1994), 245-254. | MR | Zbl
, , ,[9] Power integral bases in dihedral quartic fields. J. Number Theory 76 (1999), 120-129. | MR | Zbl
,[10] An elementary test for the Galois group of a quartic polynomial. Amer. Math. Monthly 96 (1989), 133-137. | MR | Zbl
, ,