The complex sum of digits function and primes
Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 133-146.

La notion de développement q-adique d’un entier, pour une base q donnée, se généralise dans l’anneau des entiers de Gauss [i] au développement d’un entier de Gauss suivant une certaine base b[i], ce développement étant unique. Dans cet article, on s’intéresse à la fonction νb, désignant la somme de chiffres dans le développement suivant la base b. On montre un résultat sur la fonction somme de chiffres pour les nombres non multiples d’une puissance f-ième d’un nombre premier. On établit aussi pour νb un théorème du type Erdös-Kac. Dans ces résultats, l’équidistribution de νb joue un rôle essentiel. Partant de cela, les démonstrations font alors appel à des méthodes de crible, ainsi qu’à une version du modèle de Kubilius.

Canonical number systems in the ring of gaussian integers [i] are the natural generalization of ordinary q-adic number systems to [i]. It turns out, that each gaussian integer has a unique representation with respect to the powers of a certain base number b. In this paper we investigate the sum of digits function νb of such number systems. First we prove a theorem on the sum of digits of numbers, that are not divisible by the f-th power of a prime. Furthermore, we establish an Erdös-Kac type theorem for νb. In all proofs the equidistribution of νb in residue classes plays a crucial rôle. Starting from this fact we use sieve methods and a version of the model of Kubilius to prove our results.

@article{JTNB_2000__12_1_133_0,
     author = {J\"org M. Thuswaldner},
     title = {The complex sum of digits function and primes},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {133--146},
     publisher = {Universit\'e Bordeaux I},
     volume = {12},
     number = {1},
     year = {2000},
     zbl = {1012.11071},
     mrnumber = {1827844},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_133_0/}
}
TY  - JOUR
AU  - Jörg M. Thuswaldner
TI  - The complex sum of digits function and primes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2000
SP  - 133
EP  - 146
VL  - 12
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_133_0/
LA  - en
ID  - JTNB_2000__12_1_133_0
ER  - 
%0 Journal Article
%A Jörg M. Thuswaldner
%T The complex sum of digits function and primes
%J Journal de théorie des nombres de Bordeaux
%D 2000
%P 133-146
%V 12
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_133_0/
%G en
%F JTNB_2000__12_1_133_0
Jörg M. Thuswaldner. The complex sum of digits function and primes. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 133-146. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_133_0/

[1] A.C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc 49 (1941), 121-136. | JFM | MR | Zbl

[2] A.N. Danilov, On sequences of values of additive arithmetical functions defined on the set of ideals of a field K of degree n over the field of rational numbers (russian). Leningrad Gos. Ped. Inst. Ucen. Zap 274 (1965), 59-70. | MR | Zbl

[3] P.D.T.A. Elliott, Probabilistic number theory i. central limit theorems. Springer, New-York, 1979.

[4] C.G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 (1945), 1-125. | MR | Zbl

[5] A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica 13 (1968), 259-265. | MR | Zbl

[6] B. Gittenberger and J.M. Thuswaldner, The moments of the sum of digits function in number fields. Canadian Math. Bull. 42 (1999), 68-77. | MR | Zbl

[7] P.J. Grabner, P. Kirschenhofer, and H. Prodinger, The sum- of- digits-function for complex bases. J. London Math. Soc., to appear. | MR | Zbl

[8] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers. 2nd ed., Clarendon Press, Oxford, 1960. | MR | Zbl

[9] L.K. Hua, On exponential sums over an algebraic number field. Can. J. Math. 3 (1951), no. 1, 44-51. | MR | Zbl

[10] Z. Juskys, Limit theorems for additive functions defined on ordered semigroups with a regular norm (russian). Lietuvos Matematikos Rinkinys 4 (1964), 565-603. | MR | Zbl

[11] I. Kátai and J. Szabó, Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975), 255-260. | Zbl

[12] B. Kovács, Canonical number systems in algebraic number fields. Acta Math. Hungar. 37 (1981), 405-407. | Zbl

[13] B. Kovács and A. Pethö, Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 55 (1991), 286-299. | Zbl

[14] J. Kubilius, Probabilistic methods in the theory of numbers. Amer. Math. Soc. Translations of Math. Monographs, No. 11, Providence, 1964. | Zbl

[15] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61 (1996), no. 1, 25-38. | Zbl

[16] C. Mauduit and A. Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed. Acta Arith. 81 (1997), no. 2, 145-173. | Zbl

[17] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer, Berlin, 1990. | Zbl

[18] J.M. Thuswaldner, The sum of digits function in number fields: Distribution in residue classes. J. Number Th. 74 (1999), 111-125. | Zbl

[19] ____, The fundamental lemma of Kubilius and the model of Kubilius in number fields. Number Theory, Diophantine, Computational and Algebraic Aspects (Berlin) (K. Györy et. al., ed.), 1998, pp. 489-499. | Zbl

[20] W.-B. Zhang, Probabilistic number theory in additive semigroups I. Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam (Boston, Basel, Berlin) (B. C. Berndt et. al., ed.), vol. 2, 1996, pp. 839-885. | Zbl