We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.
Nous donnons un aperçu de progrès récents en théorie de l'approximation diophantienne. Le point de départ étant le théorème de Roth, nous nous intéressons d'abord à la conjecture de Mordell, puis ensuite à des résultats analogues en dimension supérieure, résultats dûs à Faltings-Wustholz et à Faltings.
@article{JTNB_1999__11_2_439_0, author = {Michael Nakamaye}, title = {Diophantine approximation on algebraic varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {439--502}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {2}, year = {1999}, zbl = {0991.11044}, mrnumber = {1745889}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_439_0/} }
TY - JOUR AU - Michael Nakamaye TI - Diophantine approximation on algebraic varieties JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 439 EP - 502 VL - 11 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_439_0/ LA - en ID - JTNB_1999__11_2_439_0 ER -
Michael Nakamaye. Diophantine approximation on algebraic varieties. Journal de théorie des nombres de Bordeaux, Volume 11 (1999) no. 2, pp. 439-502. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_439_0/
[B1] On the Thue-Siegel-Dyson theorem. Acta Math. 148 (1982), 255-296. | MR | Zbl
,[B2] The Mordell Conjecture revisited. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., IV, 17 (1991), 615-640. | Numdam | MR | Zbl
,[D] The approximation to algebraic numbers by rationals, Acta Math. 9 (1947), 225-240. | MR | Zbl
,[EE] B. Edixhoven & J.-H. Evertse editors, Diophantine Approximation and Abelian Varieties. Springer Lecture Notes 1566 (1993). | MR | Zbl
[EV] Dyson's Lemma for polynomials in several variables (and the Theorem of Roth). Inv. Math. 78 (1984), 445-490. | MR | Zbl
& ,[F1] Diophantine Approximation on Abelian Varieties. Annals of Math. 133 (1991), 549-576. | MR | Zbl
,[F2] The general case of S. Lang's conjecture. in: Christante and Messing (eds.), Barsotti symposium in algebraic geometry, Academic Press, (1994), 175-182. | MR | Zbl
,[FW1] G. Faltings & G. Wüstholz, editors, Rational Points. Vieweg, (1984). | MR | Zbl
[FW2] Diophantine approximations on projective spaces. Inv. math. 116 (1994), 109-138. | MR | Zbl
& ,[H] Sur les Conjectures de Mordell et Lang. Astérisque, 209 (1992), 39-56. | MR | Zbl
,[L1] Fundamentals of Diophantine Geometry. Springer Verlag, (1983). | MR | Zbl
,[L2] S. Lang (Ed.), Number Theory III: Diophantine Geometry. Springer Verlag, (1991). | MR | Zbl
[M] A Remark on Mordell's Conjecture. American Journal of Math. 87, No. 4 (1965), 1007-1016. | MR | Zbl
,[N1] Dyson's Lemma and a Theorem of Esnault and Viehweg. Inv. Math. 121 (1995), 355-377. | MR | Zbl
,[N2] Dyson's Lemma with Moving Parts. Mathematische Annalen, 310 (1998), 161-168. | MR | Zbl
,[N3] Intersection Theory and Diophantine Approximation. to appear, Journal of Algebraic Geometry. | MR | Zbl
,[S1] Diophantine Approximation, Springer Lecture Notes 785 (1980). | MR | Zbl
,[S2] Diophantine Approximations and Diophantine Equations. Springer Lecture Notes 1467 (1991). | MR | Zbl
,[SE] Lectures on the Mordell-Weil Theorem. Vieweg, (1990). | Zbl
,[Vi] On Dyson's lemma. Ann. Sc. Norm. Super. Pisa, 12 (1985), 105-135. | Numdam | MR | Zbl
,[V1] Dyson's lemma for products of two curves of arbitrary genus. Inv. Math. 98 (1989), 107-113. | MR | Zbl
,[V2] Siegel's theorem in the compact case. Annals of Math. 133 (1991), 509-548. | MR | Zbl
,[V3] A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. Journal AMS, 4 (1992), 763-804. | MR | Zbl
,[V4] Some applications of arithmetic algebraic geometry to diophantine approximations. Proceedings of the CIME Conference, nento, (1991), LNM 1553, Springer, ((1993)). | MR | Zbl
,[V5] Integral points on subvarieties of semi-abelian varieties, I. Inv. Math. 126 (1996), 133-181. | MR | Zbl
,